Approximate Bayesian neural Doppler imaging

Asensio Ramos, A.; Díaz Baso, C. J.; Kochukhov, O.
Referencia bibliográfica

Astronomy and Astrophysics

Fecha de publicación:
2
2022
Número de autores
3
Número de autores del IAC
1
Número de citas
9
Número de citas referidas
7
Descripción

Aims: The non-uniform surface temperature distribution of rotating active stars is routinely mapped with the Doppler imaging technique. Inhomogeneities in the surface produce features in high-resolution spectroscopic observations that shift in wavelength because of the Doppler effect, depending on their position on the visible hemisphere. The inversion problem has been systematically solved using maximum a posteriori regularized methods assuming smoothness or maximum entropy. Our aim in this work is to solve the full Bayesian inference problem by providing access to the posterior distribution of the surface temperature in the star compatible with the observations.
Methods: We use amortized neural posterior estimation to produce a model that approximates the high-dimensional posterior distribution for spectroscopic observations of selected spectral ranges sampled at arbitrary rotation phases. The posterior distribution is approximated with conditional normalizing flows, which are flexible, tractable, and easy-to-sample approximations to arbitrary distributions. When conditioned on the spectroscopic observations, these normalizing flows provide a very efficient way of obtaining samples from the posterior distribution. The conditioning on observations is achieved through the use of Transformer encoders, which can deal with arbitrary wavelength sampling and rotation phases.
Results: Our model can produce thousands of posterior samples per second, each one accompanied by an estimation of the log-probability. Our exhaustive validation of the model for very high-signal-to-noise observations shows that it correctly approximates the posterior, albeit with some overestimation of the broadening. We apply the model to the moderately fast rotator II Peg, producing the first Bayesian map of its temperature inhomogenities. We conclude that conditional normalizing flows are a very promising tool for carrying out approximate Bayesian inference in more complex problems in stellar physics, such as constraining the magnetic properties using polarimetry.
Proyectos relacionados
Imagen del Proyecto
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García
Project Image
Magnetismo, Polarización y Transferencia Radiativa en Astrofísica
Los campos magnéticos están presentes en todos los plasmas astrofísicos y controlan la mayor parte de la variabilidad que se observa en el Universo a escalas temporales intermedias. Se encuentran en estrellas, a lo largo de todo el diagrama de Hertzsprung-Russell, en galaxias, e incluso quizás en el medio intergaláctico. La polarización de la luz
Tanausú del
Pino Alemán