Fundamental physics with ESPRESSO: Precise limit on variations in the fine-structure constant towards the bright quasar HE 0515−4414

Murphy, Michael T.; Molaro, Paolo; Leite, Ana C. O.; Cupani, Guido; Cristiani, Stefano; D'Odorico, Valentina; Génova Santos, Ricardo; Martins, Carlos J. A. P.; Milaković, Dinko; Nunes, Nelson J.; Schmidt, Tobias M.; Pepe, Francesco A.; Rebolo, Rafael; Santos, Nuno C.; Sousa, Sérgio G.; Zapatero Osorio, Maria-Rosa; Amate, Manuel; Adibekyan, Vardan; Alibert, Yann; Allende Prieto, Carlos; Baldini, Veronica; Benz, Willy; Bouchy, François; Cabral, Alexandre; Dekker, Hans; Di Marcantonio, Paolo; Ehrenreich, David; Figueira, Pedro; González Hernández, Jonay I.; Landoni, Marco; Lovis, Christophe; Lo Curto, Gaspare; Manescau, Antonio; Mégevand, Denis; Mehner, Andrea; Micela, Giuseppina; Pasquini, Luca; Poretti, Ennio; Riva, Marco; Sozzetti, Alessandro; Suarez Mascareño, Alejandro; Udry, Stéphane; Zerbi, Filippo
Referencia bibliográfica

Astronomy and Astrophysics

Fecha de publicación:
2
2022
Número de autores
43
Número de autores del IAC
6
Número de citas
39
Número de citas referidas
34
Descripción
The strong intervening absorption system at redshift 1.15 towards the very bright quasar HE 0515−4414 is the most studied absorber for measuring possible cosmological variations in the fine-structure constant, α. We observed HE 0515−4414 for 16.1 h with the Very Large Telescope and present here the first constraint on relative variations in α with parts-per-million (ppm) precision from the new ESPRESSO spectrograph: Δα/α = 1.3 ± 1.3stat ± 0.4sys ppm. The statistical uncertainty (1σ) is similar to the ensemble precision of previous large samples of absorbers and derives from the high signal-to-noise ratio achieved (≈105 per 0.4 km s−1 pixel). ESPRESSO's design, and the calibration of our observations with its laser frequency comb, effectively removed wavelength calibration errors from our measurement. The high resolving power of our ESPRESSO spectrum (R = 145 000) enabled the identification of very narrow components within the absorption profile, allowing a more robust analysis of Δα/α. The evidence for the narrow components is corroborated by their correspondence with previously detected molecular hydrogen and neutral carbon. The main remaining systematic errors arise from ambiguities in the absorption profile modelling, effects from redispersing the individual quasar exposures, and convergence of the parameter estimation algorithm. All analyses of the spectrum, including systematic error estimates, were initially blinded to avoid human biases. We make our reduced ESPRESSO spectrum of HE 0515−4414 publicly available for further analysis. Combining our ESPRESSO result with 28 measurements, from other spectrographs, in which wavelength calibration errors have been mitigated yields a weighted mean Δα/α = −0.5 ± 0.5stat ± 0.4sys ppm at redshifts 0.6−2.4.

Based on Guaranteed Time Observations collected at the European Southern Observatory under ESO programme 1102.A-0852 by the ESPRESSO Consortium.

Based on Guaranteed Time Observations collected at the European Southern Observatory under ESO programme 1102.A-0852 by the ESPRESSO Consortium.

The data and analysis products from this work are publicly available at https://doi.org/10.5281/zenodo.5512490 (<xref ref-type="bibr" rid="R57">Murphy et al. 2021</xref>).

Proyectos relacionados
Mapa de todo el cielo mostrando la distribución espacial de las anisotropias primarias del Fondo Cósmico de Microondas (generadas sólo 380,000 años después del Big Bang) extraído de las observaciones del satélite Planck
Anisotropía del Fondo Cósmico de Microondas
El objetivo general de este proyecto es determinar y estudiar las variaciones espaciales y espectrales en la temperatura del Fondo Cósmico de Microondas y en su Polarización en un amplio rango de escalas angulares que van desde pocos minutos de arco hasta varios grados. Las fluctuaciones primordiales en la densidad de materia, que dieron origen a
Rafael
Rebolo López
spectrum of mercury lamp
Abundancias Químicas en Estrellas
La espectroscopía de estrellas nos permite determinar las propiedades y composiciones químicas de las mismas. A partir de esta información para estrellas de diferente edad en la Vía Láctea es posible reconstruir la evolución química de la Galaxia, así como el origen de los elementos más pesados que el boro, forjados principalmente en los interiores
Carlos
Allende Prieto