The HADES RV programme with HARPS-N at TNG. XI. GJ 685 b: a warm super-Earth around an active M dwarf

Pinamonti, M.; Sozzetti, A.; Giacobbe, P.; Damasso, M.; Scandariato, G.; Perger, M.; González Hernández, J. I.; Lanza, A. F.; Maldonado, J.; Micela, G.; Suárez Mascareño, A.; Toledo-Padrón, B.; Affer, L.; Benatti, S.; Bignamini, A.; Bonomo, A. S.; Claudi, R.; Cosentino, R.; Desidera, S.; Maggio, A.; Martinez Fiorenzano, A.; Pagano, I.; Piotto, G.; Rainer, M.; Rebolo, R.; Ribas, I.
Referencia bibliográfica

Astronomy and Astrophysics, Volume 625, id.A126, 17 pp.

Fecha de publicación:
Número de autores
Número de autores del IAC
Número de citas
Número de citas referidas
Context. Small rocky planets seem to be very abundant around low-mass M-type stars. Their actual planetary population is however not yet precisely understood. Currently, several surveys aim to expand the statistics with intensive detection campaigns, both photometric and spectroscopic. Aims: The HADES program aims to improve the current statistics through the in-depth analysis of accurate radial-velocity (RV) monitoring in a narrow range of spectral sub-types, with the precision needed to detect small planets with a few Earth masses. Methods: We analyse 106 spectroscopic HARPS-N observations of the active M0-type star GJ 685 taken over the past five years. We combine these data with photometric measurements from different observatories to accurately model the stellar rotation and disentangle its signals from genuine Doppler planetary signals in the RV data. We run an MCMC analysis on the RV and activity index time series to model the planetary and stellar signals present in the data, applying Gaussian Process regression technique to deal with the stellar activity signals. Results: We identify three periodic signals in the RV time series, with periods of 9, 24, and 18 d. Combining the analyses of the photometry of the star with the activity indexes derived from the HARPS-N spectra, we identify the 18 d and 9 d signals as activity-related, corresponding to the stellar rotation period and its first harmonic, respectively. The 24 d signal shows no relation to any activity proxy, and therefore we identify it as a genuine planetary signal. We find the best-fit model describing the Doppler signal of the newly found planet, GJ 685 b, corresponding to an orbital period Pb = 24.160-0.047+0.061 d and a minimum mass MP sin i = 9.0-1.8+1.7 M⊕. We also study a sample of 70 RV-detected M-dwarf planets, and present new statistical evidence of a difference in mass distribution between the populations of single- and multi-planet systems, which can shed new light on the formation mechanisms of low-mass planets around late-type stars. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the INAF - Fundación Galileo Galilei at the Roche de Los Muchachos Observatory of the Instituto de Astrofísica de Canarias (IAC); photometric observations made with the APACHE array located at the Astronomical Observatory of the Aosta Valley; photometric observations made with the robotic telescope APT2 (within the EXORAP programme) located at Serra La Nave on Mt. Etna.
Proyectos relacionados
ARES: High Spectral Resolution
ARES: Alta Resolución ESpectral

ARES (Alta Resolución ESpectral) es un proyecto coordinado que pretende unificar y consolidar el esfuerzo del IAC en la investigación de alta resolución espectral, impulsando programas científicos frontera que el IAC desarrolla en el ámbito de exoplanetas, poblaciones estelares y cosmología, usando espectroscopía ultraestable de alta resolución.

Jonay Isai
González Hernández