Bibcode
Arregui, I.; Montes-Solís, M.; Asensio Ramos, A.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 625, id.A35, 16 pp.
Fecha de publicación:
5
2019
Revista
Número de citas
10
Número de citas referidas
10
Descripción
A classic application of coronal seismology uses transverse oscillations
of waveguides to obtain estimates of the magnetic field strength. The
procedure requires information on the density of the structures. Often
it ignores the damping of the oscillations. We computed marginal
posteriors for parameters such as the waveguide density, the density
contrast, the transverse inhomogeneity length scale, and the magnetic
field strength under the assumption that the oscillations can be
modelled as standing magnetohydrodynamic (MHD) kink modes damped by
resonant absorption. Our results show that the magnetic field strength
can be properly inferred, even if the densities inside and outside the
structure are largely unknown. Incorporating observational estimates of
plasma density further constrains the obtained posteriors. The amount of
information that is included a priori for the density and the density
contrast influences their corresponding posteriors, but very little the
inferred magnetic field strength. The decision to include or leave out
the information on the damping and the damping timescales has a minimal
impact on the obtained magnetic field strength. In contrast to the
classic method, which provides numerical estimates with error bars or
possible ranges of variation for the magnetic field strength, Bayesian
methods offer the full distribution of plausibility over the considered
range of possible values. The methods applied to available datasets of
observed transverse loop oscillations can be extended to prominence fine
structures or chromospheric spicules, and implemented to propagating
waves in addition to standing oscillations.
Proyectos relacionados
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García
Magnetismo, Polarización y Transferencia Radiativa en Astrofísica
Los campos magnéticos están presentes en todos los plasmas astrofísicos y controlan la mayor parte de la variabilidad que se observa en el Universo a escalas temporales intermedias. Se encuentran en estrellas, a lo largo de todo el diagrama de Hertzsprung-Russell, en galaxias, e incluso quizás en el medio intergaláctico. La polarización de la luz
Tanausú del
Pino Alemán