Bibcode
Moradi, H.; Baldner, C.; Birch, A. C.; Braun, D. C.; Cameron, R. H.; Duvall, T. L.; Gizon, L.; Haber, D.; Hanasoge, S. M.; Hindman, B. W.; Jackiewicz, J.; Khomenko, E.; Komm, R.; Rajaguru, P.; Rempel, M.; Roth, M.; Schlichenmaier, R.; Schunker, H.; Spruit, H. C.; Strassmeier, K. G.; Thompson, M. J.; Zharkov, S.
Referencia bibliográfica
Solar Physics, Volume 267, Issue 1, pp.1-62
Fecha de publicación:
11
2010
Revista
Número de citas
94
Número de citas referidas
77
Descripción
While sunspots are easily observed at the solar surface, determining
their subsurface structure is not trivial. There are two main hypotheses
for the subsurface structure of sunspots: the monolithic model and the
cluster model. Local helioseismology is the only means by which we can
investigate subphotospheric structure. However, as current linear
inversion techniques do not yet allow helioseismology to probe the
internal structure with sufficient confidence to distinguish between the
monolith and cluster models, the development of physically realistic
sunspot models are a priority for helioseismologists. This is because
they are not only important indicators of the variety of physical
effects that may influence helioseismic inferences in active regions,
but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this
article, we provide a critical review of the existing sunspot models and
an overview of numerical methods employed to model wave propagation
through model sunspots. We then carry out a helioseismic analysis of the
sunspot in Active Region 9787 and address the serious inconsistencies
uncovered by Gizon et al. (2009a, 2009). We find that this sunspot is
most probably associated with a shallow, positive wave-speed
perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.
Proyectos relacionados
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García