Performance of solar far-side active region neural detection

Broock, E. G.; Felipe, T.; Asensio Ramos, A.
Referencia bibliográfica

Astronomy and Astrophysics

Fecha de publicación:
8
2021
Número de autores
3
Número de autores del IAC
3
Número de citas
6
Número de citas referidas
5
Descripción
Context. Far-side helioseismology is a technique used to infer the presence of active regions in the far hemisphere of the Sun based on the interpretation of oscillations measured in the near hemisphere. A neural network has recently been developed to improve the sensitivity of the seismic maps to the presence of far-side active regions.
Aims: Our aim is to evaluate the performance of the new neural network approach and to thoroughly compare it with the standard method commonly applied to predict far-side active regions from seismic measurements.
Methods: We have computed the predictions of active regions using the neural network and the standard approach from five years of far-side seismic maps as a function of the selected threshold in the signatures of the detections. The results have been compared with direct extreme ultraviolet observations of the far hemisphere acquired with the Solar Terrestrial Relations Observatory.
Results: We have confirmed the improved sensitivity of the neural network to the presence of far-side active regions. Approximately 96% of the active regions identified by the standard method with a strength above the threshold commonly employed by previous analyses are related to locations with enhanced extreme ultraviolet emission. For this threshold, the false positive ratio is 3.75%. For an equivalent false positive ratio, the neural network produces 47% more true detections. Weaker active regions can be detected by relaxing the threshold in their seismic signature. For almost the entire range of thresholds, the performance of the neural network is superior to that of the standard approach, delivering a higher number of confirmed detections and a lower rate of false positives.
Conclusions: The neural network is a promising approach for improving the interpretation of the seismic maps provided by local helioseismic techniques. Additionally, refined predictions of magnetic activity in the non-visible solar hemisphere can play a significant role in space weather forecasting.
Proyectos relacionados
Imagen del Proyecto
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García
Project Image
Magnetismo, Polarización y Transferencia Radiativa en Astrofísica
Los campos magnéticos están presentes en todos los plasmas astrofísicos y controlan la mayor parte de la variabilidad que se observa en el Universo a escalas temporales intermedias. Se encuentran en estrellas, a lo largo de todo el diagrama de Hertzsprung-Russell, en galaxias, e incluso quizás en el medio intergaláctico. La polarización de la luz
Tanausú del
Pino Alemán