Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Gauthier, C.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M. et al.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 571, id.A22, 42 pp.
Fecha de publicación:
11
2014
Revista
Número de citas
1000
Número de citas referidas
937
Descripción
We analyse the implications of the Planck data for cosmic inflation. The
Planck nominal mission temperature anisotropy measurements, combined
with the WMAP large-angle polarization, constrain the scalar spectral
index to be ns = 0.9603 ± 0.0073, ruling out exact
scale invariance at over 5σ.Planck establishes an upper bound on
the tensor-to-scalar ratio of r< 0.11 (95% CL). The Planck data thus
shrink the space of allowed standard inflationary models, preferring
potentials with V''< 0. Exponential potential models, the simplest
hybrid inflationary models, and monomial potential models of degree n
≥ 2 do not provide a good fit to the data. Planck does not find
statistically significant running of the scalar spectral index,
obtaining dns/ dlnk = - 0.0134 ± 0.0090. We verify
these conclusions through a numerical analysis, which makes no slow-roll
approximation, and carry out a Bayesian parameter estimation and
model-selection analysis for a number of inflationary models including
monomial, natural, and hilltop potentials. For each model, we present
the Planck constraints on the parameters of the potential and explore
several possibilities for the post-inflationary entropy generation
epoch, thus obtaining nontrivial data-driven constraints. We also
present a direct reconstruction of the observable range of the inflaton
potential. Unless a quartic term is allowed in the potential, we find
results consistent with second-order slow-roll predictions. We also
investigate whether the primordial power spectrum contains any features.
We find that models with a parameterized oscillatory feature improve the
fit by Δχ2eff ≈ 10 ; however,
Bayesian evidence does not prefer these models. We constrain several
single-field inflation models with generalized Lagrangians by combining
power spectrum data with Planck bounds on fNL. Planck
constrains with unprecedented accuracy the amplitude and possible
correlation (with the adiabatic mode) of non-decaying isocurvature
fluctuations. The fractional primordial contributions of cold dark
matter (CDM) isocurvature modes of the types expected in the curvaton
and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL),
respectively. In models with arbitrarily correlated CDM or neutrino
isocurvature modes, an anticorrelated isocurvature component can improve
the χ2eff by approximately 4 as a result of
slightly lowering the theoretical prediction for the ℓ ≲ 40
multipoles relative to the higher multipoles. Nonetheless, the data are
consistent with adiabatic initial conditions.
Proyectos relacionados
Anisotropía del Fondo Cósmico de Microondas
El objetivo general de este proyecto es determinar y estudiar las variaciones espaciales y espectrales en la temperatura del Fondo Cósmico de Microondas y en su Polarización en un amplio rango de escalas angulares que van desde pocos minutos de arco hasta varios grados. Las fluctuaciones primordiales en la densidad de materia, que dieron origen a
Rafael
Rebolo López