Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chluba, J.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Farhang, M.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Giusarma, E.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S. et al.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 594, id.A13, 63 pp.
Fecha de publicación:
9
2016
Revista
Número de citas
1000
Número de citas referidas
909
Descripción
This paper presents cosmological results based on full-mission Planck
observations of temperature and polarization anisotropies of the cosmic
microwave background (CMB) radiation. Our results are in very good
agreement with the 2013 analysis of the Planck nominal-mission
temperature data, but with increased precision. The temperature and
polarization power spectra are consistent with the standard
spatially-flat 6-parameter ΛCDM cosmology with a power-law
spectrum of adiabatic scalar perturbations (denoted "base ΛCDM"
in this paper). From the Planck temperature data combined with Planck
lensing, for this cosmology we find a Hubble constant, H0 =
(67.8 ± 0.9) km s-1Mpc-1, a matter density
parameter Ωm = 0.308 ± 0.012, and a tilted
scalar spectral index with ns = 0.968 ± 0.006,
consistent with the 2013 analysis. Note that in this abstract we quote
68% confidence limits on measured parameters and 95% upper limits on
other parameters. We present the first results of polarization
measurements with the Low Frequency Instrument at large angular scales.
Combined with the Planck temperature and lensing data, these
measurements give a reionization optical depth of τ = 0.066 ±
0.016, corresponding to a reionization redshift of
z_re=8.8+1.7-1.4. These results are consistent with
those from WMAP polarization measurements cleaned for dust emission
using 353-GHz polarization maps from the High Frequency Instrument. We
find no evidence for any departure from base ΛCDM in the neutrino
sector of the theory; for example, combining Planck observations with
other astrophysical data we find Neff = 3.15 ± 0.23
for the effective number of relativistic degrees of freedom, consistent
with the value Neff = 3.046 of the Standard Model of particle
physics. The sum of neutrino masses is constrained to ∑
mν < 0.23 eV. The spatial curvature of our Universe is
found to be very close to zero, with | ΩK | < 0.005.
Adding a tensor component as a single-parameter extension to base
ΛCDM we find an upper limit on the tensor-to-scalar ratio of
r0.002< 0.11, consistent with the Planck 2013 results and
consistent with the B-mode polarization constraints from a joint
analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP
B-mode data to our analysis leads to a tighter constraint of
r0.002 < 0.09 and disfavours inflationarymodels with a
V(φ) ∝ φ2 potential. The addition of Planck
polarization data leads to strong constraints on deviations from a
purely adiabatic spectrum of fluctuations. We find no evidence for any
contribution from isocurvature perturbations or from cosmic defects.
Combining Planck data with other astrophysical data, including Type Ia
supernovae, the equation of state of dark energy is constrained to w =
-1.006 ± 0.045, consistent with the expected value for a
cosmological constant. The standard big bang nucleosynthesis predictions
for the helium and deuterium abundances for the best-fit Planck base
ΛCDM cosmology are in excellent agreement with observations. We
also constraints on annihilating dark matter and on possible deviations
from the standard recombination history. In neither case do we find no
evidence for new physics. The Planck results for base ΛCDM are in
good agreement with baryon acoustic oscillation data and with the JLA
sample of Type Ia supernovae. However, as in the 2013 analysis, the
amplitude of the fluctuation spectrum is found to be higher than
inferred from some analyses of rich cluster counts and weak
gravitational lensing. We show that these tensions cannot easily be
resolved with simple modifications of the base ΛCDM cosmology.
Apart from these tensions, the base ΛCDM cosmology provides an
excellent description of the Planck CMB observations and many other
astrophysical data sets.