Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Baker, M.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhandari, P.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borders, J.; Borrill, J.; Bouchet, F. R.; Bowman, B.; Bradshaw, T.; Bréelle, E.; Bucher, M.; Burigana, C.; Butler, R. C.; Cabella, P.; Camus, P.; Cantalupo, C. M.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chambelland, J. P.; Charra, J.; Charra, M.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Collaudin, B.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Crook, M.; Cuttaia, F.; Damasio, C.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dolag, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Filliard, C.; Finelli, F.; Foley, S.; Forni, O.; Fosalba, P.; Fourmond, J.-J.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Gavila, E.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guyot, G.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M. et al.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 536, id.A2
Fecha de publicación:
12
2011
Revista
Número de citas
89
Número de citas referidas
81
Descripción
The performance of the Planck instruments in space is enabled by their
low operating temperatures, 20 K for LFI and 0.1 K for HFI, achieved
through a combination of passive radiative cooling and three active
mechanical coolers. The scientific requirement for very broad frequency
coverage led to two detector technologies with widely different
temperature and cooling needs. Active coolers could satisfy these needs;
a helium cryostat, as used by previous cryogenic space missions (IRAS,
COBE, ISO, Spitzer, AKARI), could not. Radiative cooling is provided by
three V-groove radiators and a large telescope baffle. The active
coolers are a hydrogen sorption cooler (<20 K), a 4He
Joule-Thomson cooler (4.7 K), and a 3He-4He
dilution cooler (1.4 K and 0.1 K). The flight system was at ambient
temperature at launch and cooled in space to operating conditions. The
HFI bolometer plate reached 93 mK on 3 July 2009, 50 days after launch.
The solar panel always faces the Sun, shadowing the rest of Planck,
andoperates at a mean temperature of 384 K. At the other end of the
spacecraft, the telescope baffle operates at 42.3 K and the telescope
primary mirror operates at 35.9 K. The temperatures of key parts of the
instruments are stabilized by both active and passive methods.
Temperature fluctuations are driven by changes in the distance from the
Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and
fluctuations in cosmic ray flux on the dilution and bolometer plates.
These fluctuations do not compromise the science data.
Proyectos relacionados
Anisotropía del Fondo Cósmico de Microondas
El objetivo general de este proyecto es determinar y estudiar las variaciones espaciales y espectrales en la temperatura del Fondo Cósmico de Microondas y en su Polarización en un amplio rango de escalas angulares que van desde pocos minutos de arco hasta varios grados. Las fluctuaciones primordiales en la densidad de materia, que dieron origen a
Rafael
Rebolo López