Bibcode
Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battye, R.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Calabrese, E.; Carron, J.; Chiang, H. C.; Comis, B.; Contreras, D.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Forastieri, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gerbino, M.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Handley, W.; Hansen, F. K.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Levrier, F.; Liguori, M.; Lilje, P. B.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G. et al.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 617, id.A48, 17 pp.
Fecha de publicación:
9
2018
Revista
Número de citas
32
Número de citas referidas
29
Descripción
Using the Planck full-mission data, we present a detection of the
temperature (and therefore velocity) dispersion due to the kinetic
Sunyaev-Zeldovich (kSZ) effect from clusters of galaxies. To suppress
the primary CMB and instrumental noise we derive a matched filter and
then convolve it with the Planck foreground-cleaned "2D-ILC" maps. By
using the Meta Catalogue of X-ray detected Clusters of galaxies (MCXC),
we determine the normalized rms dispersion of the temperature
fluctuations at the positions of clusters, finding that this shows
excess variance compared with the noise expectation. We then build an
unbiased statistical estimator of the signal, determining that the
normalized mean temperature dispersion of 1526 clusters is
<(ΔT/T)2 > = (1.64 ± 0.48) ×
10-11. However, comparison with analytic calculations and
simulations suggest that around 0.7 σ of this result is due to
cluster lensing rather than the kSZ effect. By correcting this, the
temperature dispersion is measured to be
<(ΔT/T)2> = (1.35 ± 0.48) ×
10-11, which gives a detection at the 2.8 σ level. We
further convert uniform-weight temperature dispersion into a measurement
of the line-of-sight velocity dispersion, by using estimates of the
optical depth of each cluster (which introduces additional uncertainty
into the estimate). We find that the velocity dispersion is
<υ2> = (123 000 ± 71 000) (km
s-1)2, which is consistent with findings from
other large-scale structure studies, and provides direct evidence of
statistical homogeneity on scales of 600 h-1 Mpc. Our study
shows the promise of using cross-correlations of the kSZ effect with
large-scale structure in order to constrain the growth of structure.