SDSS J163030.58+423305.8: a 40-min orbital period detached white dwarf binary

Kilic, Mukremin; Brown, Warren R.; Hermes, J. J.; Allende-Prieto, C.; Kenyon, S. J.; Winget, D. E.; Winget, K. I.
Referencia bibliográfica

Monthly Notices of the Royal Astronomical Society: Letters, Volume 418, Issue 1, pp. L157-L161.

Fecha de publicación:
11
2011
Número de autores
7
Número de autores del IAC
1
Número de citas
25
Número de citas referidas
24
Descripción
We report the discovery of a new detached, double white dwarf (WD) system with an orbital period of 39.8 min. We targeted SDSS J163030.58+423305.8 (hereafter J1630) as part of our radial velocity programme to search for companions around low-mass WDs using the 6.5-m MMT. We detect peak-to-peak radial velocity variations of 576 km s-1. The mass function and optical photometry rule out main-sequence companions. In addition, no millisecond pulsar companions are detected in radio observations. Thus the invisible companion is most likely another WD. Unlike the other 39-min binary SDSS J010657.39-100003.3, follow-up high-speed photometric observations of J1630 obtained at the McDonald 2.1-m telescope do not show significant ellipsoidal variations, indicating a higher primary mass and smaller radius. The absence of eclipses constrain the inclination angle to i≤ 82°. J1630 contains a pair of WDs, 0.3 M&sun; primary +≥0.3 M&sun; invisible secondary, at a separation of ≥0.32 R&sun;. The two WDs will merge in less than 31 Myr. Depending on the core composition of the companion, the merger will form either a single core He-burning subdwarf star or a rapidly rotating massive WD. The gravitational wave strain from J1630 is detectable by instruments like the Laser Interferometer Space Antenna (LISA) within the first year of operation. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.
Proyectos relacionados
spectrum of mercury lamp
Abundancias Químicas en Estrellas

La espectroscopía de estrellas nos permite determinar las propiedades y composiciones químicas de las mismas. A partir de esta información para estrellas de diferente edad en la Vía Láctea es posible reconstruir la evolución química de la Galaxia, así como el origen de los elementos más pesados que el boro, forjados principalmente en los interiores

Carlos
Allende Prieto