Signatures of the impact of flare-ejected plasma on the photosphere of a sunspot light bridge

Felipe, T.; Collados, M.; Khomenko, E.; Rajaguru, S. P.; Franz, M.; Kuckein, C.; Asensio Ramos, A.
Referencia bibliográfica

Astronomy and Astrophysics, Volume 608, id.A97, 12 pp.

Fecha de publicación:
12
2017
Número de autores
7
Número de autores del IAC
4
Número de citas
11
Número de citas referidas
10
Descripción
Aims: We investigate the properties of a sunspot light bridge, focusing on the changes produced by the impact of a plasma blob ejected from a C-class flare. Methods: We observed a sunspot in active region NOAA 12544 using spectropolarimetric raster maps of the four Fe I lines around 15 655 Å with the GREGOR Infrared Spectrograph, narrow-band intensity images sampling the Fe I 6173 Å line with the GREGOR Fabry-Pérot Interferometer, and intensity broad-band images in G-band and Ca II H-band with the High-resolution Fast Imager. All these instruments are located at the GREGOR telescope at the Observatorio del Teide, Tenerife, Spain. The data cover the time before, during, and after the flare event. The analysis is complemented with Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager data from the Solar Dynamics Observatory. The physical parameters of the atmosphere at differents heights were inferred using spectral-line inversion techniques. Results: We identify photospheric and chromospheric brightenings, heating events, and changes in the Stokes profiles associated with the flare eruption and the subsequent arrival of the plasma blob to the light bridge, after traveling along an active region loop. Conclusions: The measurements suggest that these phenomena are the result of reconnection events driven by the interaction of the plasma blob with the magnetic field topology of the light bridge. Movies attached to Figs. 1 and 3 are available at http://www.aanda.org
Proyectos relacionados
Imagen del Proyecto
Magnestismo Solar y Estelar

Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas

Tobías
Felipe García
Project Image
Magnetismo, Polarización y Transferencia Radiativa en Astrofísica

Los campos magnéticos están presentes en todos los plasmas astrofísicos y controlan la mayor parte de la variabilidad que se observa en el Universo a escalas temporales intermedias. Se encuentran en estrellas, a lo largo de todo el diagrama de Hertzsprung-Russell, en galaxias, e incluso quizás en el medio intergaláctico. La polarización de la luz

Tanausú del
Pino Alemán