Bibcode
Martínez-González, M. J.; Manso-Sainz, R.; Asensio-Ramos, A.; Bellot Rubio, L. R.
Referencia bibliográfica
The Astrophysical Journal Letters, Volume 714, Issue 1, pp. L94-L97 (2010).
Fecha de publicación:
5
2010
Número de citas
58
Número de citas referidas
45
Descripción
Sunspots are the most spectacular manifestation of solar magnetism, yet
99% of the solar surface remains "quiet" at any time of the solar cycle.
The quiet sun is not void of magnetic fields, though; they are organized
at smaller spatial scales and evolve relatively fast, which makes them
difficult to detect. Thus, although extensive quiet Sun magnetism would
be a natural driver to a uniform, steady heating of the outer solar
atmosphere, it is not clear what the physical processes involved would
be, due to lack of observational evidence. We report on the topology and
dynamics of the magnetic field in very quiet regions of the Sun from
spectropolarimetric observations of the Hinode satellite, showing a
continuous injection of magnetic flux with a well-organized topology of
Ω-loop from below the solar surface into the upper layers. At
first stages, when the loop travels across the photosphere, it has a
flattened (staple-like) geometry and a mean velocity ascent of ~3 km
s-1. When the loop crosses the minimum temperature region,
the magnetic fields at the footpoints become almost vertical and the
loop topology resembles a potential field. The mean ascent velocity at
chromospheric height is ~12 km s-1. The energy input rate of
these small-scale loops in the lower boundary of the chromosphere is (at
least) of 1.4 × 106-2.2 × 107 erg
cm-2 s-1. Our findings provide empirical evidence
for solar magnetism as a multi-scale system, in which small-scale
low-flux magnetism plays a crucial role, at least as important as active
regions, coupling different layers of the solar atmosphere and being an
important ingredient for chromospheric and coronal heating models.
Proyectos relacionados
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García
Magnetismo, Polarización y Transferencia Radiativa en Astrofísica
Los campos magnéticos están presentes en todos los plasmas astrofísicos y controlan la mayor parte de la variabilidad que se observa en el Universo a escalas temporales intermedias. Se encuentran en estrellas, a lo largo de todo el diagrama de Hertzsprung-Russell, en galaxias, e incluso quizás en el medio intergaláctico. La polarización de la luz
Tanausú del
Pino Alemán