Los denominados objetos trans-Neptunianos extremos (ETNOs) se encuentran orbitando al Sol a distancias heliocéntricas superiores a 150 UAs y su descubrimiento, hace apenas una década, supuso un punto de inflexión en nuestro conocimiento sobre el Sistema Solar exterior. Hasta la fecha se han identificado un total de 21 ETNOs y solo uno, Sedna, ha sido observado espectroscópicamente. En los últimos años diversos trabajos han planteado la posibilidad de la existencia de uno o varios planetas de varias masas terrestres orbitando a cientos de UAs para explicar las propiedades dinámicas de los ETNOs. En 2016, Brown y Batygin usaron las órbitas de siete de estos ETNOs para predecir la existencia de una super-Tierra en el rango de masas de planetas sub-neptunianos orbitando a unas 700 UAs del Sol: es la denominada hipótesis del “Planeta Nueve”. Entre estos siete ETNOs existe un par, 2004 VN112 – 2013 RF98 que presenta órbitas casi idénticas, con una separación angular extremadamente pequeña entre las direcciones tanto de sus perihelios como de sus polos orbitales. Esto sugiere un origen dinámico común: en septiembre de 2016 utilizamos la cámara-espectrógrafo OSIRIS del telescopio de 10.4m GTC para obtener los espectros en el rango visible de este par de ETNOs y saber si, además, este par presentaba un origen físico común. Las pendientes espectrales obtenidas para ambos objetos son prácticamente idénticas, 12 ± 2 %/1000Å y 15 ± 2 %/1000Å para 2004 VN112 y 2013 RF98, respectivamente, y similares a los valores obtenidos a partir de observaciones fotométricas de 2000 CR105 (14 %) y 2012 VP113 (13%). Estos valores indican la posible presencia de silicatos amorfos en la superficie de estos objetos, que en ningún caso estarán dominadas por orgánicos complejos o “tholins”. En contraste, Sedna presenta un valor de 42%, muy diferente del resto de ETNOs, lo que indica la presencia de material orgánico en su superficie. Estos cinco objetos forman parte del grupo de siete ETNOs utilizado para plantear la hipótesis del Planeta Nueve, sugiriendo que todos deben tener una región de origen común, salvo Sedna, que se cree proviene de la zona interna de la nube de Oort. Dado que la obtención de pendientes espectrales similares para el par 2004 VN112 – 2013 RF98 sugiere un origen físico común, nos planteamos la posibilidad de que este par hubiera sido en su día un asteroide binario que quedó desligado por un encuentro con un objeto más masivo. Para validar esta hipótesis llevamos a cabo miles de simulaciones numéricas, analizando la evolución de la separación angular de los polos orbitales de estos dos objetos con el tiempo. Nuestros resultados sugieren que un planeta con una masa de entre 10 y 20 masas terrestres, en una órbita con semieje mayor entre 300 y 600 UAs, excentricidad entre 0.1 y 0.4 e inclinación entre 20 y 50 grados, podría desligar nuestro asteroide binario en escalas de tiempo entre 5 y 10 millones de años.
Fecha de publicación
Referencias
Otras noticias relacionadas
-
El modelo jerárquico de la evolución de las galaxias sugiere que las fusiones de galaxias tienen un impacto sustancial en los intrincados procesos que impulsan el ensamblaje de la masa estelar dentro de una galaxia. Sin embargo, medir con precisión la contribución de las fusiones a la masa estelar total de una galaxia y su equilibrio con la formación estelar in situ plantea un desafío persistente, ya que no es directamente observable ni se infiere fácilmente a partir de datos observacionales. Utilizando datos de MaNGA, presentamos predicciones para la fracción de masa estelar que se originaFecha de publicación
-
El desarrollo de la última generación de telescopios tipo Cherenkov (IACT de sus siglas en inglés) en las últimas décadas ha llevado al descubrimiento de nuevos fenómenos astrofísicos extremos en el rango de rayos gamma de muy alta energía (VHE de sus siglas en inglés, E > 100 GeV). La astronomía multi-mensajero y temporal está inevitablemente conectada a la física de fuentes transitorias emisoras de rayos gamma VHE, que muestran explosiones o periodos eruptivos de manera inesperada e impredecible en diferentes escalas de tiempo. Estas fuentes transitorias comparten a menudo procesos físicosFecha de publicación
-
El sistema transitorio Swift J1727.8-162 es el miembro más reciente de la familia de agujeros negros en binarias de rayos-X descubierto hasta la fecha. Están formados por un agujero negro y una estrella de baja masa a la que arranca gas, que forma un disco de acreción antes de ser finalmente acretado por el agujero negro. Debido a su elevada temperatura, el disco emite luz hasta el rango de los rayos-X, brillando con especial intensidad durante épocas conocidas como erupciones. Este nuevo estudio, publicado apenas unos meses después del descubrimiento, presenta 20 épocas de espectroscopíaFecha de publicación