A brief review of contrastive learning applied to astrophysics

Huertas-Company, Marc; Sarmiento, Regina; Knapen, Johan H.
Referencia bibliográfica

RAS Techniques and Instruments

Fecha de publicación:
1
2023
Número de autores
3
Número de autores del IAC
3
Número de citas
12
Número de citas referidas
9
Descripción
Reliable tools to extract patterns from high-dimensionality spaces are becoming more necessary as astronomical data sets increase both in volume and complexity. Contrastive Learning is a self-supervised machine learning algorithm that extracts informative measurements from multidimensional data sets, which has become increasingly popular in the computer vision and Machine Learning communities in recent years. To do so, it maximizes the agreement between the information extracted from augmented versions of the same input data, making the final representation invariant to the applied transformations. Contrastive Learning is particularly useful in astronomy for removing known instrumental effects and for performing supervised classifications and regressions with a limited amount of available labels, showing a promising avenue towards Foundation Models. This short review paper briefly summarizes the main concepts behind contrastive learning and reviews the first promising applications to astronomy. We include some practical recommendations on which applications are particularly attractive for contrastive learning.
Proyectos relacionados
Project Image
Las Galaxias Espirales: Evolución y Consecuencias
Nuestro grupo pequeño esta bien conocido y respetado internacionalmente por nuestro trabajo inovativo e importante en varios aspectos de la estructura y la evolución de las galaxias espirales cercanas. Usamos principalmente observaciones en varias longitudes de onda, explotando las sinergías que nos permiten responder a las cuestiones más
Johan Hendrik
Knapen Koelstra
Miembros del grupo
Huellas de la Formación de las Galaxias: Poblaciones estelares, Dinámica y Morfología
Bienvenida a la página web del g rupo de investigación Traces of Galaxy Formation. Somos un grupo de investigación amplio, diverso y muy activo cuyo objetivo principal es entender la formación de galaxias en el Universo de una manera lo más completa posible. Con el estudio detellado de las poblaciones estelares como bandera, estamos constantemente
Ignacio
Martín Navarro