Bibcode
Bello-García, A.; Passegger, V. M.; Ordieres-Meré, J.; Schweitzer, A.; Caballero, J. A.; González-Marcos, A.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Béjar, V. J. S.; Cifuentes, C.; Henning, Th.; Kaminski, A.; Luque, R.; Montes, D.; Morales, J. C.; Pedraz, S.; Tabernero, H. M.; Zechmeister, M.
Referencia bibliográfica
Astronomy and Astrophysics
Fecha de publicación:
5
2023
Revista
Número de citas
2
Número de citas referidas
2
Descripción
The large amounts of astrophysical data being provided by existing and future instrumentation require efficient and fast analysis tools. Transfer learning is a new technique promising higher accuracy in the derived data products, with information from one domain being transferred to improve the accuracy of a neural network model in another domain. In this work, we demonstrate the feasibility of applying the deep transfer learning (DTL) approach to high-resolution spectra in the framework of photospheric stellar parameter determination. To this end, we used 14 stars of the CARMENES survey sample with interferometric angular diameters to calculate the effective temperature, as well as six M dwarfs that are common proper motion companions to FGK-type primaries with known metallicity. After training a deep learning (DL) neural network model on synthetic PHOENIX-ACES spectra, we used the internal feature representations together with those 14+6 stars with independent parameter measurements as a new input for the transfer process. We compare the derived stellar parameters of a small sample of M dwarfs kept out of the training phase with results from other methods in the literature. Assuming that temperatures from bolometric luminosities and interferometric radii and metallicities from FGK+M binaries are sufficiently accurate, DTL provides a higher accuracy than our previous state-of-the-art DL method (mean absolute differences improve by 20 K for temperature and 0.2 dex for metallicity from DL to DTL when compared with reference values from interferometry and FGK+M binaries). Furthermore, the machine learning (internal) precision of DTL also improves as uncertainties are five times smaller on average. These results indicate that DTL is a robust tool for obtaining M-dwarf stellar parameters comparable to those obtained from independent estimations for well-known stars.
Full Table A.1 is only available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/673/A105
Proyectos relacionados
Estrellas de Baja Masa, Enanas Marrones y Planetas
Se investigan los procesos que conducen a la formación de estrellas de baja masa, enanas marrones y exoplanetas y caracterizar las propiedades físicas de estos astros en varias etapas evolutivas. Las estrellas de muy baja masa y las enanas marrones son probablemente los objetos más numerosos de nuestra Galaxia, pero no por ello están
Rafael
Rebolo López
Exoplanetas y Astrobiología
La búsqueda de vida en el Universo se ha visto impulsada por los recientes descubrimientos de planetas alrededor de otras estrellas (los llamados exoplanetas), convirtiéndose en uno de los campos más activos dentro de la Astrofísica moderna. En los últimos años los descubrimientos cada vez más numerosos de nuevos exoplanetas y los últimos avances
Enric
Pallé Bago