Bibcode
Perez, Joaquin; Magdalena Rodriguez, M.; Traizet, Martin
Referencia bibliográfica
eprint arXiv:math/0501507
Fecha de publicación:
1
2005
Número de citas
0
Número de citas referidas
0
Descripción
Let $mathcal{K}$ be the space of properly embedded minimal tori in
quotients of $R^3$ by two independent translations, with any fixed
(even) number of parallel ends. After an appropriate normalization, we
prove that $mathcal{K}$ is a 3-dimensional real analytic manifold that
reduces to the finite coverings of the examples defined by Karcher,
Meeks and Rosenberg in cite{ka4,ka6,mr3}. The degenerate limits of
surfaces in $mathcal{K}$ are the catenoid, the helicoid and three
1-parameter families of surfaces: the simply and doubly periodic Scherk
minimal surfaces and the Riemann minimal examples.