Bibcode
Cerviño, M.; Román-Zúñiga, C.; Bayo, A.; Luridiana, V.; Sánchez, N.; Pérez, E.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 553, id.A32, 9 pp.
Fecha de publicación:
5
2013
Revista
Número de citas
4
Número de citas referidas
4
Descripción
Context. In a probabilistic framework of the interpretation of the
initial mass function (IMF), the IMF cannot be arbitrarily normalized to
the total mass, ℳ, or number of stars, N, of the system. Hence,
the inference of ℳ and N when partial information about the
studied system is available must be revised (i.e., the contribution to
the total quantity cannot be obtained by simple algebraic manipulations
of the IMF). Aims: We study how to include constraints in the IMF
to make inferences about different quantities characterizing stellar
systems. It is expected that including any particular piece of
information about a system would constrain the range of possible
solutions. However, different pieces of information might be irrelevant
depending on the quantity to be inferred. In this work we want to
characterize the relevance of the priors in the possible inferences. Methods: Assuming that the IMF is a probability distribution
function, we derive the sampling distributions of ℳ and N of the
system constrained to different types of information available.
Results: We show that the value of ℳ that would be inferred must
be described as a probability distribution
Φℳ[ℳ;ma,Na,ΦN(N)]
that depends on the completeness limit of the data, ma, the
number of stars observed down to this limit, Na, and the
prior hypothesis made on the distribution of the total number of stars
in clusters, ΦN(N).
Proyectos relacionados
Física de Nebulosas Ionizadas
Este proyecto mantiene dos líneas principales de investigación activas: 1) Estudio de la estructura, condiciones físicas y composición química de las nebulosas ionizadas, tanto galácticas como extragalácticas, a través del análisis detallado y modelización de sus espectros. Investigación de los gradientes de composición química a lo largo del disco
Jorge
García Rojas