Bibcode
Álvarez-Herrero, A.; Belenguer, T.; Pastor, C.; González, L.; Heredero, R. L.; Ramos, G.; Reina, M.; Sánchez, A.; Villanueva, J.; Sabau, L.; Martínez Pillet, V.; Bonet, J. A.; Collados, M.; Jochum, L.; Ballesteros, E.; Medina Trujillo, J. L.; Ruiz, Cobo B.; González, J. C.; del Toro Iniesta, J. C.; López Jiménez, A. C.; Castillo Lorenzo, J.; Herranz, M.; Jerónimo, J. M.; Mellado, P.; Morales, R.; Rodríguez, J.; Domingo, V.; Gasent, J. L.; Rodríquez, P.
Referencia bibliográfica
Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter. Edited by John C. Mather, Howard A. MacEwen, and Mattheus W. M. de Graauw. Proceedings of the SPIE, Volume 6265, pp. 62654C (2006).
Fecha de publicación:
7
2006
Número de citas
0
Número de citas referidas
0
Descripción
In this work, it is described the Imaging Magnetograph eXperiment, IMaX,
one of the three postfocal instruments of the Sunrise mission. The
Sunrise project consists on a stratospheric balloon with a 1 m aperture
telescope, which will fly from the Antarctica within the NASA Long
Duration Balloon Program. IMaX will provide vector magnetograms of the
solar surface with a spatial resolution of 70 m. This data is relevant
for understanding how the magnetic fields emerge in the solar surface,
how they couple the photospheric base with the million degrees of
temperature of the solar corona and which are the processes that are
responsible of the generation of such an immense temperatures. To meet
this goal IMaX should work as a high sensitivity polarimeter, high
resolution spectrometer and a near diffraction limited imager. Liquid
Crystal Variable Retarders will be used as polarization modulators
taking advantage of the optical retardation induced by application of
low electric fields and avoiding mechanical mechanisms. Therefore, the
interest of these devices for aerospace applications is envisaged. The
spectral resolution required will be achieved by using a
LiNbO3 Fabry-Perot etalon in double pass configuration as
spectral filter before the two CCDs detectors. As well phase-diversity
techniques will be implemented in order to improve the image quality.
Nowadays, IMaX project is in the detailed design phase before
fabrication, integration, assembly and verification. This paper briefly
describes the current status of the instrument and the technical
solutions developed to fulfil the scientific requirements.