Bibcode
Marcel, P.; Ovsienko, V.; Roger, C.
Referencia bibliográfica
eprint arXiv:hep-th/9602170
Fecha de publicación:
2
1996
Número de citas
0
Número de citas referidas
0
Descripción
We consider the universal central extension of the Lie algebra $Vect
(S^1)${math s}$ C^{infty}(S^1)$. The coadjoint representation of this
Lie algebra has a natural geometric interpretation by matrix analogues
of the Sturm-Liouville operators. This approach leads to new Lie
superalgebras generalizing the well-known Neveu-Schwartz algebra.