Bibcode
Khesin, Boris; Lyubashenko, Volodymyr; Roger, Claude
Referencia bibliográfica
eprint arXiv:hep-th/9403189
Fecha de publicación:
3
1994
Número de citas
7
Número de citas referidas
4
Descripción
We construct cocycles on the Lie algebra of pseudo- and
q-pseudodifferential symbols of one variable and on their close
relatives: the sine-algebra and the Poisson algebra on two-torus. A
``quantum'' Godbillon-Vey cocycle on (pseudo)-differential operators
appears in this construction as a natural generalization of the
Gelfand-Fuchs 3-cocycle on periodic vector fields. We describe a
nontrivial embedding of the Virasoro algebra into (a completion of)
q-pseudodifferential symbols, and propose q-analogs of the KP and
KdV-hierarchies admitting an infinite number of conserved charges.