The Formation of a 70 M<SUB>☉</SUB> Black Hole at High Metallicity

Belczynski, K.; Hirschi, R.; Kaiser, E. A.; Liu, Jifeng; Casares, J.; Lu, Youjun; O'Shaughnessy, R.; Heger, A.; Justham, S.; Soria, R.
Referencia bibliográfica

The Astrophysical Journal

Fecha de publicación:
2
2020
Número de autores
10
Número de autores del IAC
1
Número de citas
60
Número de citas referidas
52
Descripción
A 70 ${M}_{\odot }$ black hole (BH) was discovered in the Milky Way disk in a long-period detached binary system (LB-1) with a high-metallicity 8 ${M}_{\odot }$ B star companion. Current consensus on the formation of BHs from high-metallicity stars limits the BH mass to be below 20 ${M}_{\odot }$ due to strong mass loss in stellar winds. Using analytic evolutionary formulae, we show that the formation of a 70 ${M}_{\odot }$ BH in a high-metallicity environment is possible if wind mass-loss rates are reduced by factor of five. As observations indicate, a fraction of massive stars have surface magnetic fields that may quench the wind mass-loss, independently of stellar mass and metallicity. We confirm such a scenario with detailed stellar evolution models. A nonrotating 85 ${M}_{\odot }$ star model at Z = 0.014 with decreased winds ends up as a 71 ${M}_{\odot }$ star prior to core collapse with a 32 ${M}_{\odot }$ He core and a 28 ${M}_{\odot }$ CO core. Such a star avoids the pair-instability pulsation supernova mass loss that severely limits BH mass and may form a ̃70 ${M}_{\odot }$ BH in the direct collapse. Stars that can form 70 ${M}_{\odot }$ BHs at high Z expand to significant sizes, with radii of R ≳ 600 ${R}_{\odot }$ , however, exceeding the size of the LB-1 orbit. Therefore, we can explain the formation of BHs up to 70 ${M}_{\odot }$ at high metallicity and this result is valid whether or not LB-1 hosts a massive BH. However, if LB-1 hosts a massive BH we are unable to explain how such a binary star system could have formed without invoking some exotic scenarios.
Proyectos relacionados
Agujero negro en erupción
Agujeros negros, estrellas de neutrones, enanas blancas y su entorno local
Los agujeros negros y estrellas de neutrones en binarias de rayos-X son laboratorios únicos para explorar la física de estos objetos compactos. No solo permiten confirmar la existencia de agujeros negros de origen estelar a través de mediciones dinámicas de sus masas, sino que también permiten investigar el comportamiento de la materia y la
Montserrat
Armas Padilla