Bibcode
Schlaufman, Kevin C.; Rockosi, Constance M.; Lee, Young Sun; Beers, Timothy C.; Allende-Prieto, C.
Referencia bibliográfica
The Astrophysical Journal, Volume 734, Issue 1, article id. 49 (2011).
Fecha de publicación:
6
2011
Revista
Número de citas
28
Número de citas referidas
27
Descripción
We determine the average metallicities of the elements of cold halo
substructure (ECHOS) that we previously identified in the inner halo of
the Milky Way within 17.5 kpc of the Sun. As a population, we find that
stars kinematically associated with ECHOS are chemically distinct from
the background kinematically smooth inner halo stellar population along
the same Sloan Extension for Galactic Understanding and Exploration
(SEGUE) line of sight. ECHOS are systematically more iron-rich, but less
α-enhanced than the kinematically smooth component of the inner
halo. ECHOS are also chemically distinct from other Milky Way
components: more iron-poor than typical thick-disk stars and both more
iron-poor and α-enhanced than typical thin-disk stars. In
addition, the radial velocity dispersion distribution of ECHOS extends
beyond σ ~ 20 km s-1. Globular clusters are unlikely
ECHOS progenitors, as ECHOS have large velocity dispersions and are
found in a region of the Galaxy in which iron-rich globular clusters are
very rare. Likewise, the chemical composition of stars in ECHOS does not
match predictions for stars formed in the Milky Way and subsequently
scattered into the inner halo. Dwarf spheroidal (dSph) galaxies are
possible ECHOS progenitors, and if ECHOS are formed through the tidal
disruption of one or more dSph galaxies, the typical ECHOS [Fe/H] ~ -
1.0 and radial velocity dispersion σ ~ 20 km s-1
implies a dSph with M tot >~ 109 M
sun. Our observations confirm the predictions of theoretical
models of Milky Way halo formation that suggest that prominent
substructures are likely to be metal-rich, and our result implies that
the most likely metallicity for a recently accreted star currently in
the inner halo is [Fe/H] ~ - 1.0.
Proyectos relacionados
Abundancias Químicas en Estrellas
La espectroscopía de estrellas nos permite determinar las propiedades y composiciones químicas de las mismas. A partir de esta información para estrellas de diferente edad en la Vía Láctea es posible reconstruir la evolución química de la Galaxia, así como el origen de los elementos más pesados que el boro, forjados principalmente en los interiores
Carlos
Allende Prieto