Bibcode
Liakh, V.; Luna, M.; Khomenko, E.
Referencia bibliográfica
Astronomy and Astrophysics
Fecha de publicación:
10
2021
Revista
Número de citas
14
Número de citas referidas
14
Descripción
Context. Large-amplitude longitudinal oscillations (LALOs) in solar prominences have been widely studied in recent decades. However, their damping and amplification mechanisms are not well understood.
Aims: In this study, we investigate the attenuation and amplification of LALOs using high-resolution numerical simulations with progressively increasing spatial resolutions.
Methods: We performed time-dependent numerical simulations of LALOs using the 2D magnetic configuration that contains a dipped region. After the prominence mass loading in the magnetic dips, we triggered LALOs by perturbing the prominence mass along the magnetic field. We performed the experiments with four values of spatial resolution.
Results: In the simulations with the highest resolution, the period shows good agreement with the pendulum model. The convergence experiment revealed that the damping time saturates at the bottom prominence region with increasing resolution, indicating the existence of a physical reason for the damping of oscillations. At the prominence top, the oscillations are amplified during the first minutes and are then slowly attenuated. The characteristic time suggests more significant amplification in the experiments with the highest spatial resolution. The analysis revealed that the energy exchange between the bottom and top prominence regions is responsible for the attenuation and amplification of LALOs.
Conclusions: High-resolution experiments are crucial when studying the periods and the damping mechanism of LALOs. The period agrees with the pendulum model only when using a sufficiently high spatial resolution. The results suggest that numerical diffusion in simulations with insufficient spatial resolution can hide important physical mechanisms, such as amplification of oscillations.
Aims: In this study, we investigate the attenuation and amplification of LALOs using high-resolution numerical simulations with progressively increasing spatial resolutions.
Methods: We performed time-dependent numerical simulations of LALOs using the 2D magnetic configuration that contains a dipped region. After the prominence mass loading in the magnetic dips, we triggered LALOs by perturbing the prominence mass along the magnetic field. We performed the experiments with four values of spatial resolution.
Results: In the simulations with the highest resolution, the period shows good agreement with the pendulum model. The convergence experiment revealed that the damping time saturates at the bottom prominence region with increasing resolution, indicating the existence of a physical reason for the damping of oscillations. At the prominence top, the oscillations are amplified during the first minutes and are then slowly attenuated. The characteristic time suggests more significant amplification in the experiments with the highest spatial resolution. The analysis revealed that the energy exchange between the bottom and top prominence regions is responsible for the attenuation and amplification of LALOs.
Conclusions: High-resolution experiments are crucial when studying the periods and the damping mechanism of LALOs. The period agrees with the pendulum model only when using a sufficiently high spatial resolution. The results suggest that numerical diffusion in simulations with insufficient spatial resolution can hide important physical mechanisms, such as amplification of oscillations.
Proyectos relacionados
Simulación Numérica de Procesos Astrofísicos
La simulación numérica mediante códigos complejos de ordenador es una herramienta fundamental en la investigación física y en la técnica desde hace décadas. El crecimiento vertiginoso de las capacidades informáticas junto con el avance notable de la matemática numérica ha hecho accesible a los centros de investigación de tamaño medio
Daniel Elías
Nóbrega Siverio
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García