The Levy-Steinitz rearrangement theorem for duals of metrizable spaces

Bonet, Jose; Defant, Andreas
Referencia bibliográfica

eprint arXiv:math/9908112

Fecha de publicación:
8
1999
Número de autores
2
Número de autores del IAC
0
Número de citas
0
Número de citas referidas
0
Descripción
Extending the classical Levy-Steinitz rearrangement theorem, which in turn extended Riemann's theorem, Banaszczyk proved in 1990/93 that a metrizable, locally convex space is nuclear if and only if the domain of sums of every convergent series (i.e. the set of all elements in the space which are sums of a convergent rearrangement of the series) is a translate of a closed subspace of a special form. In this paper we present an apparently complete analysis of the domains of convergent series in duals of metrizable spaces or, more generally, in (DF)-spaces in the sense of Grothendieck.