Bibcode
DOI
Socas-Navarro, H.; Borrero, J. M.; Asensio Ramos, A.; Collados, M.; Domínguez Cerdeña, I.; Khomenko, E. V.; Martínez González, M. J.; Martínez Pillet, V.; Ruiz Cobo, B.; Sánchez Almeida, J.
Referencia bibliográfica
The Astrophysical Journal, Volume 674, Issue 1, pp. 596-606.
Fecha de publicación:
2
2008
Revista
Número de citas
30
Número de citas referidas
24
Descripción
The reliability of quiet-Sun magnetic field diagnostics based on the Fe
I lines at 6302 Å has been questioned by recent work. Here we
present the results of a thorough study of high-resolution multiline
observations taken with the new spectropolarimeter SPINOR, comprising
the 5250 and 6302 Å spectral domains. The observations were
analyzed using several inversion algorithms, including Milne-Eddington,
LTE with 1 and 2 components, and MISMA codes. We find that the
line-ratio technique applied to the 5250 Å lines is not
sufficiently reliable to provide a direct magnetic diagnostic in the
presence of thermal fluctuations and variable line broadening. In
general, one needs to resort to inversion algorithms, ideally with
realistic magnetohydrodynamic constrains. When this is done, the 5250
Å lines do not seem to provide any significant advantage over
those at 6302 Å. In fact, our results point toward a better
performance with the latter (in the presence of turbulent line
broadening). In any case, for very weak flux concentrations, neither
spectral region alone provides sufficient constraints to fully
disentangle the intrinsic field strengths. Instead, we advocate for a
combined analysis of both spectral ranges, which yields a better
determination of the quiet-Sun magnetic properties. Finally, we propose
the use of two other Fe I lines (at 4122 and 9000 Å) with
identical line opacities that seem to work much better than the others.
Proyectos relacionados
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García
Magnetismo, Polarización y Transferencia Radiativa en Astrofísica
Los campos magnéticos están presentes en todos los plasmas astrofísicos y controlan la mayor parte de la variabilidad que se observa en el Universo a escalas temporales intermedias. Se encuentran en estrellas, a lo largo de todo el diagrama de Hertzsprung-Russell, en galaxias, e incluso quizás en el medio intergaláctico. La polarización de la luz
Tanausú del
Pino Alemán