Nonsequential neural network for simultaneous, consistent classification, and photometric redshifts of OTELO galaxies

de Diego, J. A.; Nadolny, J.; Bongiovanni, Á.; Cepa, J.; Lara-López, M. A.; Gallego, J.; Cerviño, M.; Sánchez-Portal, M.; Ignacio González-Serrano, J.; Alfaro, E. J.; Pović, M.; Pérez García, A. M.; Pérez Martínez, R.; Padilla Torres, C. P.; Cedrés, B.; García-Aguilar, D.; González, J. J.; González-Otero, M.; Navarro-Martínez, R.; Pintos-Castro, I.
Referencia bibliográfica

Astronomy and Astrophysics

Fecha de publicación:
Context. Computational techniques are essential for mining large databases produced in modern surveys with value-added products.
Aims: This paper presents a machine learning procedure to carry out a galaxy morphological classification and photometric redshift estimates simultaneously. Currently, only a spectral energy distribution (SED) fitting has been used to obtain these results all at once.
Methods: We used the ancillary data gathered in the OTELO catalog and designed a nonsequential neural network that accepts optical and near-infrared photometry as input. The network transfers the results of the morphological classification task to the redshift fitting process to ensure consistency between both procedures.
Results: The results successfully recover the morphological classification and the redshifts of the test sample, reducing catastrophic redshift outliers produced by an SED fitting and avoiding possible discrepancies between independent classification and redshift estimates. Our technique may be adapted to include galaxy images to improve the classification.

Proyectos relacionados
Project Image
Evolución de Galaxias

El estudio de la evolución de las galaxias es un tema crucial de la Astronomía Extragaláctica moderna. Permite vincular las galaxias locales con las primeras que existieron en el universo. Pero para poder abordarlo es preciso obtener censos estadísticamente significativos de galaxias de distintas luminosidades, a distintas distancias

Cepa Nogue