Bibcode
Knizhnik, K.; Luna, M.; Muglach, K.; Karpen, J.; Gilbert, H.; Kucera, T. A.; Uritsky, V.
Referencia bibliográfica
The Astrophysical Journal, Volume 785, Issue 1, article id. 79, 13 pp. (2014).
Fecha de publicación:
4
2014
Revista
Número de citas
60
Número de citas referidas
57
Descripción
On 2010 August 20, an energetic disturbance triggered large-amplitude
longitudinal oscillations in a nearby filament. The triggering mechanism
appears to be episodic jets connecting the energetic event with the
filament threads. In the present work, we analyze this periodic motion
in a large fraction of the filament to characterize the underlying
physics of the oscillation as well as the filament properties. The
results support our previous theoretical conclusions that the restoring
force of large-amplitude longitudinal oscillations is solar gravity, and
the damping mechanism is the ongoing accumulation of mass onto the
oscillating threads. Based on our previous work, we used the fitted
parameters to determine the magnitude and radius of curvature of the
dipped magnetic field along the filament, as well as the mass accretion
rate onto the filament threads. These derived properties are nearly
uniform along the filament, indicating a remarkable degree of
cohesiveness throughout the filament channel. Moreover, the estimated
mass accretion rate implies that the footpoint heating responsible for
the thread formation, according to the thermal nonequilibrium model,
agrees with previous coronal heating estimates. We estimate the
magnitude of the energy released in the nearby event by studying the
dynamic response of the filament threads, and discuss the implications
of our study for filament structure and heating.
Proyectos relacionados
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García