Bibcode
                                    
                            Lardo, C.; Mashonkina, L.; Jablonka, P.; Bonifacio, P.; Caffau, E.; Aguado, D. S.; González Hernández, J. I.; Sestito, F.; Kielty, C. L.; Venn, K. A.; Hill, V.; Starkenburg, E.; Martin, N. F.; Sitnova, T.; Arentsen, A.; Carlberg, R. G.; Navarro, J. F.; Kordopatis, G.
    Referencia bibliográfica
                                    Monthly Notices of the Royal Astronomical Society
Fecha de publicación:
    
                        12
            
                        2021
            
  Número de citas
                                    17
                            Número de citas referidas
                                    15
                            Descripción
                                    Elemental abundances of the most metal-poor stars reflect the conditions in the early Galaxy and the properties of the first stars. We present a spectroscopic follow-up of two ultra-metal-poor stars ([Fe/H] < -4.0) identified by the survey Pristine: Pristine 221.8781+9.7844 and Pristine 237.8588+12.5660 (hereafter Pr 221 and Pr 237, respectively). Combining data with earlier observations, we find a radial velocity of -149.25 ± 0.27 and -3.18 ± 0.19 km s-1 for Pr 221 and Pr 237, respectively, with no evidence of variability between 2018 and 2020. From a one-dimensional (1D) local thermodynamic equilibrium (LTE) analysis, we measure [Fe/H]LTE = -4.79 ± 0.14 for Pr 221 and -4.22 ± 0.12 for Pr 237, in good agreement with previous studies. Abundances of Li, Na, Mg, Al, Si, Ca, Ti, Fe, and Sr were derived based on the non-LTE (NLTE) line formation calculations. When NLTE effects are included, we measure slightly higher metallicities: [Fe/H]NLTE = -4.40 ± 0.13 and -3.93 ± 0.12, for Pr 221 and Pr 237, respectively. Analysis of the G band yields [C/Fe]1D-LTE ≤ +2.3 and [C/Fe]1D-LTE ≤ +2.0 for Pr 221 and Pr 237. Both stars belong to the low-carbon band. Upper limits on nitrogen abundances are also derived. Abundances for other elements exhibit good agreement with those of stars with similar parameters. Finally, to get insight into the properties of their progenitors, we compare NLTE abundances to theoretical yields of zero-metallicity supernovae (SNe). This suggests that the SNe progenitors had masses ranging from 10.6 to 14.4 M⊙ and low-energy explosions with (0.3-1.2) × 1051 erg.
                            Proyectos relacionados
                
Abundancias Químicas en Estrellas
            
    La espectroscopía de estrellas nos permite determinar las propiedades y composiciones químicas de las mismas. A partir de esta información para estrellas de diferente edad en la Vía Láctea es posible reconstruir la evolución química de la Galaxia, así como el origen de los elementos más pesados que el boro, forjados principalmente en los interiores
            
            Carlos
            
                        Allende Prieto