Propagating Waves Transverse to the Magnetic Field in a Solar Prominence

Schmieder, B.; Kucera, T. A.; Knizhnik, K.; Luna-Bennasar, M.; Lopez-Ariste, A.; Toot, D.
Referencia bibliográfica

The Astrophysical Journal, Volume 777, Issue 2, article id. 108, 11 pp. (2013).

Fecha de publicación:
11
2013
Número de autores
6
Número de autores del IAC
1
Número de citas
60
Número de citas referidas
52
Descripción
We report an unusual set of observations of waves in a large prominence pillar that consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT; in Ca II and Hα lines), Sac Peak (in Hα, Hβ, and Na-D lines), and THEMIS ("Télescope Héliographique pour l' Etude du Magnétisme et des Instabilités Solaires") with the MTR (MulTi-Raies) spectropolarimeter (in He D3 line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the four hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km s–1, a period of about 300 s, and a wavelength around 2000 km. We interpret these waves in terms of fast magnetosonic waves and discuss possible wave drivers.
Proyectos relacionados
Imagen del Proyecto
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García