Bibcode
Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Klein, J.; Korotkov, A. L.; Matthews, T. G.; Moncelsi, L.; Mroczkowski, A.; Netterfield, C. B.; Novak, G.; Nutter, D.; Pascale, E.; Poidevin, F.; Savini, G.; Scott, D.; Shariff, Jamil A.; Thomas, N. E.; Truch, M. D.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.
Referencia bibliográfica
Proceedings of the SPIE, Volume 9145, id. 914534 18 pp. (2014).
Fecha de publicación:
7
2014
Número de citas
5
Número de citas referidas
3
Descripción
We present the thermal model of the Balloon-borne Large-Aperture
Submillimeter Telescope for Polarimetry (BLASTPol). This instrument was
successfully own in two circumpolar flights from McMurdo, Antarctica in
2010 and 2012. During these two flights, BLASTPol obtained unprecedented
information about the magnetic field in molecular clouds through the
measurement of the polarized thermal emission of interstellar dust
grains. The thermal design of the experiment addresses the stability and
control of the payload necessary for this kind of measurement. We
describe the thermal modeling of the payload including the sun-shielding
strategy. We present the in-flight thermal performance of the instrument
and compare the predictions of the model with the temperatures
registered during the flight. We describe the difficulties of modeling
the thermal behavior of the balloon-borne platform and establish
landmarks that can be used in the design of future balloon-borne
instruments.