Bibcode
González, J. Jesús; Tejada, Carlos; Farah, Alejandro; Rasilla, Jose L.; Fuentes, F. Javier
Referencia bibliográfica
Instrument Design and Performance for Optical/Infrared Ground-based Telescopes. Edited by Iye, Masanori; Moorwood, Alan F. M. Proceedings of the SPIE, Volume 4841, pp. 1480-1486 (2003).
Fecha de publicación:
3
2003
Número de citas
2
Número de citas referidas
1
Descripción
Tight stability requirements for the imager/spectrograph OSIRIS (a Day
One optical instrument for the GTC telescope) demand a careful treatment
of thermal effects within the OSIRIS camera. Mostly due to the thermal
response of refraction indices of its glasses (and not so much to
curvature, spacing or thickness variations of the lenses), the camera
optics alone degrades beyond requirements the image quality and plate
scale under the expected ambient temperature variations (about 1.8
°C/hour). Thermal effects and thermal compensator studies of the
OSIRIS camera are first summarized, before discussing how the motion (of
a few microns per °C) of the 3rd camera doublet, as a
sole compensator, practically eliminates thermal influences on both
image quality and plate scale. A concept for the passive implementation
of the compensator is also discussed.