Bibcode
Schlesinger, K. J.; Johnson, Jennifer A.; Rockosi, Constance M.; Lee, Young Sun; Beers, Timothy C.; Harding, Paul; Allende Prieto, C.; Bird, Jonathan C.; Schönrich, Ralph; Yanny, Brian; Schneider, Donald P.; Weaver, Benjamin A.; Brinkmann, Jon
Referencia bibliográfica
The Astrophysical Journal, Volume 791, Issue 2, article id. 112, 23 pp. (2014).
Fecha de publicación:
8
2014
Revista
Número de citas
31
Número de citas referidas
28
Descripción
Using G dwarfs from the Sloan Extension for Galactic Understanding and
Exploration (SEGUE) survey, we have determined the vertical metallicity
gradient in the Milky Way's disk and examined how this gradient varies
for different [α/Fe] subsamples. Our sample contains over 40,000
stars with low-resolution spectroscopy over 144 lines of sight. It also
covers a significant disk volume, between ~0.3 and 1.6 kpc from the
Galactic plane, and allows us to examine the disk in situ, whereas
previous analyses were more limited in scope. Furthermore, this work
does not presuppose a disk structure, whether composed of a single
complex population or distinct thin and thick disk components. We employ
the SEGUE Stellar Parameter Pipeline to obtain estimates of stellar
parameters, [Fe/H], and [α/Fe] and extract multiple
volume-complete subsamples of approximately 1000 stars each. Based on
SEGUE's target-selection algorithm, we adjust each subsample to
determine an unbiased picture of disk chemistry; consequently, each
individual star represents the properties of many. The metallicity
gradient is –0.243^{+0.039}_{-0.053} dex kpc–1
for the entire sample, which we compare to various literature results.
This gradient stems from the different [α/Fe] populations
inhabiting different ranges of height above the Galactic plane. Each
[α/Fe] subsample shows little change in median [Fe/H] with height.
If we associate [α/Fe] with age, the negligible gradients of our
[α/Fe] subsamples suggest that stars formed in different epochs
exhibit comparable vertical structure, implying similar star formation
processes and evolution.
Proyectos relacionados
Abundancias Químicas en Estrellas
La espectroscopía de estrellas nos permite determinar las propiedades y composiciones químicas de las mismas. A partir de esta información para estrellas de diferente edad en la Vía Láctea es posible reconstruir la evolución química de la Galaxia, así como el origen de los elementos más pesados que el boro, forjados principalmente en los interiores
Carlos
Allende Prieto