Los campos magnéticos están presentes a toda escala en el Universo, desde los planetas y las estrellas hasta las galaxias y los cúmulos de galaxias incluso a distancias extremadamente grandes. Son importantes para la permanencia de la vida en la Tierra, el inicio de la formación de las estrellas, la estructura del medio interestelar, y la evolución de las galaxias. Entender el Universo sin entender los campos magnéticos no es posible. El origen y la evolución de los campos magnéticos es uno de las cuestiones más candentes en la astronomía moderna. La teoría para explicar los campos magnéticos en las estrellas y los planetas que tiene mayor aceptación es la teoría del dínamo α-Ω, que describe el proceso por el cual un fluido que gira, que tiene convección, y que conduce electricidad puede mantener un campo magnético durante escalas de tiempo astronómicas. A escalas mayores un proceso de dínamo similar podría producir campos magnéticos coherentes en galaxias mediante una combinación de turbulencia helicoidal, y rotación diferencial, pero hasta la fecha se ha encontrado escasa evidencia observacional en favor de esta teoría. Al analizar los datos disponibles de galaxias aisladas que no están en cúmulos, que no tienen interacciones con otras y con campos magnéticos a gran escala muy conocidos hemos encontrado una correlación muy estrecha entre la intensidad del campo magnético a gran escala y la velocidad de rotación de las galaxias. Esta correlación es lineal, si suponemos que los campos magnéticos y los rayos cómicos tienen energías esencialmente iguales. Esta correlación, sin embargo, no puede atribuirse a una dínamo α-Ω lineal, porque la correlación no existe con la cizalla global ni con la velocidad angular de las galaxias. La correlación observada muestra que el campo magnético anisotrópico y turbulento domina el campo a gran escala en las galaxias con rotación rápida, porque el campo magnético turbulento, que se acopla al gas, se aumenta y se ordena debida a la fuerte compresión del gas y/o la cizalla local en estos sistemas. Este estudio apoya una condición estacionaria del campo magnético a gran escala, mientras la masa dinámica de la galaxia permanece constante.
Fecha de publicación
Referencias
Otras noticias relacionadas
-
El campo magnético de la cromosfera solar desempeña un papel clave en el calentamiento de la atmósfera solar exterior y en la acumulación y liberación repentina de energía en las erupciones solares. Sin embargo, cartografiar el vector del campo magnético en la cromosfera solar es una tarea muy difícil porque el campo magnético deja sus huellas en la polarización muy tenue de la luz, la cual no es nada fácil medir e interpretar. Analizamos las observaciones espectropolarimétricas obtenidas con el “Chromospheric LAyer Spectro-Polarimeter” (CLASP) a bordo de un cohete sonda. Este experimentoFecha de publicación
-
El desarrollo de la última generación de telescopios tipo Cherenkov (IACT de sus siglas en inglés) en las últimas décadas ha llevado al descubrimiento de nuevos fenómenos astrofísicos extremos en el rango de rayos gamma de muy alta energía (VHE de sus siglas en inglés, E > 100 GeV). La astronomía multi-mensajero y temporal está inevitablemente conectada a la física de fuentes transitorias emisoras de rayos gamma VHE, que muestran explosiones o periodos eruptivos de manera inesperada e impredecible en diferentes escalas de tiempo. Estas fuentes transitorias comparten a menudo procesos físicosFecha de publicación
-
Las estrellas masivas, aquellas que tienen más de diez veces la masa de nuestro Sol, son el origen de la mayoría de los elementos de la tabla periódica, dando forma a la composición morfológica y química de sus galaxias anfitrionas. Sin embargo, el origen de las más luminosas y calientes entre ellas, conocidas como 'supergigantes azules', ha sido debatido durante décadas. Las supergigantes azules son estrellas enigmáticas. Primero, son numerosas, a pesar de que la física estelar convencional predice que vivan solo brevemente. Segundo, típicamente se encuentran aisladas, a pesar de que laFecha de publicación