Las supernovas de tipo Ia ocurren cuando una enana blanca de carbono y oxígeno acrece suficiente masa para producir una explosión termonuclear. La acreción puede ser lenta, desde una estrella (proceso con una única estrella degenerada) no evolucionada (secuencia principal)o evolucionada (subgiante o gigante), o rápida, si la estrella primaria es capaz de fragmentar una enana blanca más pequeña orbitando Alrededor del centro de masas (proceso con dos estrellas degeneradas). Una estrella compañera sobrevivirá a la explosión únicamente en el primer caso. Ambos casos quizás contribuyan a la producción de supernovas de tipo Ia, pero las proporciones relativas de sus contribuciones permanece todavía como un rompecabezas en astronomía. Las búsquedas de compañeras remanentes realizadas anteriormente han revelado un posible caso en SN1572, aunque éste ha sido cuestionado. Recientemente, las observaciones han restringido las compañeras supervivientes a ser pequeñas estrellas de secuencia principal, descartando así compañeras gigantes aunque permitiendo todavía la posibilidad del proceso con una única estrella degenerada. Aquí se presentan los resultados de la búsqueda de las compañeras supervivientes del progenitor de la SN1006. Ninguna de las estrellas dentro de 4 minutos de arco del lugar aparente de la explosión se puede asociar con el remanente de la supernova, y podemos firmemente excluir todas las gigantes y las subgigantes como compañeras del progenitor. En combinación con resultados anteriores, nuestros resultados indican que menos del 20 por ciento de las supernovas de tipo Ia ocurren mediante el proceso de una única estrella degenerada.
Fecha de publicación
Otras noticias relacionadas
-
A pesar del papel fundamental que los halo de materia oscura tienen en nuestro entendimiento teórico de la formación y evolución de las galaxias, la interacción entre estas y sus halos de materia oscura sigue siendo una pregunta abierta desde el punto de vista observacional. Esta falta de evidencia observacional concluyente se debe, en última instancia, a la dificultad inherente de medir de manera robusta las propiedades de la materia oscura. Basándonos en un modelado dinámico detallado de galaxias cercanas, en este trabajo proponemos una aproximación observacional novedosa, explorando laFecha de publicación
-
Desde hace tiempo se sabe que los fulerenos – moléculas de carbono muy grandes y complejas, altamente resistentes y con potenciales aplicaciones en nanotecnología – están mayoritariamente presentes en nebulosas planetarias (NPs); estrellas viejas y moribundas con masas progenitoras similares al Sol. Los fulerenos (principalmente el C60 y C70) se han detectado en NPs en donde su espectro infrarrojo (IR) está dominado por bandas IR muy anchas aún no identificadas. La identificación de las especies químicas (estructura y composición) responsables de esta emisión IR que está ampliamente presenteFecha de publicación
-
En los años 90, el telescopio espacial COBE descubrió que no toda la emisión de microondas de nuestra galaxia se comportaba como esperábamos. Parte de la señal captada por el satélite provenía de un desconocido proceso de emisión; éste trazaba espacialmente la distribución del polvo Galáctico, pero emitía con mayor intensidad en el rango de las microondas. Desde entonces este proceso recibe el nombre de “emisión anómala de microondas” o AME, por sus siglas en inglés. Actualmente, la principal hipótesis para explicar el origen de la AME se basa en la emisión de pequeñas moléculas de polvoFecha de publicación