Aunque situado a 150 millones de kilómetros de la tierra, el Sol está en nuestra vecindad próxima en comparación con las demás estrellas. La observación del Sol a lo largo de décadas ha proporcionado una visión increíblemente detallada de la estructura y cambios día a día en la vida de una estrella; las observaciones de alta resolución obtenidas desde la Tierra y el espacio en años recientes, en particular, han permitido alcanzar conclusiones teóricas profundas sobre la estructura y evolución de su interior y atmósfera.
El Sol constituye un laboratorio de física en el que las complejas interacciones entre la materia y el campo magnético pueden ser estudiadas en condiciones difíciles de alcanzar en experimentos en tierra. De particular interés para el público son los misterios del interior solar; los fenómenos espectaculares que tienen lugar en su atmósfera; la creación de nubes magnéticas gigantes que son lanzadas al espacio interplanetario y pueden llegar a impactar a la magnetosfera terrestres, causando las tormentas solares, potencialmente un peligro para nuestra sociedad tecnológica. La comprensión de la física de todos esos fenómenos se logra mediante la combinación de métodos teóricos y observacionales refinados usando las tecnologías más avanzadas.
El grupo de física solar del IAC goza de una posición puntera en diferentes ramas de la investigación solar en el mundo. Un claro síntoma de esto es la concesión en los pasados años, por parte del Consejo Europeo de la Investigación, de cuatro grandes subvenciones de investigación a miembros del grupo; su papel protagonista en el proyecto de Telescopio Solar Europeo; y su participación en otras redes y proyectos de instrumentación internacionales. Globalmente, el grupo combina métodos teóricos (dínamica de fluidos magnetizados y física del plasma, transporte de radiación), incluyendo modelado numérico tridimensional con los ordenadores más avanzados, con técnicas de vanguardia observacionales y de diagnóstico para conseguir una comprensión física profunda de las leyes que rigen la estructura y actividad de nuestra estrella.
Física Solar (FS)
-
PublicaciónWave Conversion, Decay, and Heating in a Partially Ionized Two-fluid Magneto-atmosphereA ray-theoretic phase-space description of linear waves in a two-fluid (charges and neutrals) magnetized plasma is used to calculate analytic decay rates and...
-
PublicaciónWave heating of the solar atmosphereMagnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote...
-
PublicaciónWave Leakage and Resonant Absorption in a Loop Embedded in a Coronal ArcadeWe investigate the temporal evolution of impulsively generated perturbations in a potential coronal arcade with an embedded loop. For the initial configuration...
-
PublicaciónWave Propagation and Shock Formation in Different Magnetic StructuresVelocity oscillations "measured" simultaneously at the photosphere and the chromosphere—from time series of spectropolarimetric data in the 10830 Å region—of...
-
PublicaciónWavefront error measurements and alignment of CLASP2 telescope with a dual-band pass cold mirror coated primary mirror"Chromospheric LAyer Spectro-Polarimeter (CLASP2)" is the next sounding rocket experiment of the "Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)" that...
-
PublicaciónWhere are the solar magnetic poles?Regardless of the physical origin of stellar magnetic fields - fossil or dynamo induced - an inclination angle between the magnetic and rotation axes is very...
-
PublicaciónWhere the Granular Flows BendBased on IMaX/SUNRISE data, we report on a previously undetected phenomenon in solar granulation. We show that in a very narrow region separating granules and...
-
PublicaciónZeeman effect in sulfur monoxide. A tool to probe magnetic fields in star forming regionsContext. Magnetic fields play a fundamental role in star formation processes and the best method to evaluate their intensity is to measure the Zeeman effect of...