High spatial resolution Galactic 3D extinction mapping with IPHAS

Sale, Stuart E.; Drew, J. E.; Unruh, Y. C.; Irwin, M. J.; Knigge, C.; Phillipps, S.; Zijlstra, A. A.; Gänsicke, B. T.; Greimel, R.; Groot, P. J.; Mampaso, A.; Morris, R. A. H.; Napiwotzki, R.; Steeghs, D.; Walton, N. A.
Referencia bibliográfica

Monthly Notices of the Royal Astronomical Society, Volume 392, Issue 2, pp. 497-513.

Fecha de publicación:
1
2009
Número de autores
15
Número de autores del IAC
1
Número de citas
77
Número de citas referidas
66
Descripción
We present an algorithm (MEAD, for `Mapping Extinction Against Distance') which will determine intrinsic (r' - i') colour, extinction, and distance for early-A to K4 stars extracted from the IPHAS r'/i'/Hα photometric data base. These data can be binned up to map extinction in three dimensions across the northern Galactic plane. The large size of the IPHAS data base (~200 million unique objects), the accuracy of the digital photometry it contains and its faint limiting magnitude (r' ~ 20) allow extinction to be mapped with fine angular (~10 arcmin) and distance (~ 0.1 kpc) resolution to distances of up to 10 kpc, outside the solar circle. High reddening within the solar circle on occasion brings this range down to ~2 kpc. The resolution achieved, both in angle and depth, greatly exceeds that of previous empirical 3D extinction maps, enabling the structure of the Galactic Plane to be studied in increased detail. MEAD accounts for the effect of the survey magnitude limits, photometric errors, unresolved interstellar medium (ISM) substructure and binarity. The impact of metallicity variations, within the range typical of the Galactic disc is small. The accuracy and reliability of MEAD are tested through the use of simulated photometry created with Monte Carlo sampling techniques. The success of this algorithm is demonstrated on a selection of fields and the results are compared to the literature.
Proyectos relacionados
Nebulosa Planetaria "Necklace"
Nebulosas Bipolares
Nuestro proyecto persigue tres objetivos principales: 1) Determinar las condiciones físico-químicas de las nebulosas planetarias con geometría bipolar y de las nebulosas alrededor de estrellas simbióticas. El fin es entender el origen de la bipolaridad y poner a prueba los modelos teóricos que intentan explicar la morfología y la cinemática nebular
Antonio
Mampaso Recio