Machine-learning approaches to exoplanet transit detection and candidate validation in wide-field ground-based surveys

Schanche, N.; Collier Cameron, A.; Hébrard, G.; Nielsen, L.; Triaud, A. H. M. J.; Almenara, J. M.; Alsubai, K. A.; Anderson, D. R.; Armstrong, D. J.; Barros, S. C. C.; Bouchy, F.; Boumis, P.; Brown, D. J. A.; Faedi, F.; Hay, K.; Hebb, L.; Kiefer, F.; Mancini, L.; Maxted, P. F. L.; Palle, E.; Pollacco, D. L.; Queloz, D.; Smalley, B.; Udry, S.; West, R.; Wheatley, P. J.
Referencia bibliográfica

Monthly Notices of the Royal Astronomical Society, Volume 483, Issue 4, p.5534-5547

Fecha de publicación:
3
2019
Número de autores
26
Número de autores del IAC
1
Número de citas
39
Número de citas referidas
34
Descripción
Since the start of the Wide-angle Search for Planets (WASP) program, more than 160 transiting exoplanets have been discovered in the WASP data. In the past, possible transit-like events identified by the WASP pipeline have been vetted by human inspection to eliminate false alarms and obvious false positives. The goal of this paper is to assess the effectiveness of machine learning as a fast, automated, and reliable means of performing the same functions on ground-based wide-field transit-survey data without human intervention. To this end, we have created training and test data sets made up of stellar light curves showing a variety of signal types including planetary transits, eclipsing binaries, variable stars, and non-periodic signals. We use a combination of machine-learning methods including Random Forest Classifiers (RFCs) and convolutional neural networks (CNNs) to distinguish between the different types of signals. The final algorithms correctly identify planets in the test data ˜90 per cent of the time, although each method on its own has a significant fraction of false positives. We find that in practice, a combination of different methods offers the best approach to identifying the most promising exoplanet transit candidates in data from WASP, and by extension similar transit surveys.
Proyectos relacionados
Image withthe projects' name
Exoplanetas y Astrobiología
La búsqueda de vida en el Universo se ha visto impulsada por los recientes descubrimientos de planetas alrededor de otras estrellas (los llamados exoplanetas), convirtiéndose en uno de los campos más activos dentro de la Astrofísica moderna. En los últimos años los descubrimientos cada vez más numerosos de nuevos exoplanetas y los últimos avances
Enric
Pallé Bago