Modeling the thermal conduction in the solar atmosphere with the code MANCHA3D

Navarro, A.; Khomenko, E.; Modestov, M.; Vitas, N.
Referencia bibliográfica

Astronomy and Astrophysics

Fecha de publicación:
7
2022
Número de autores
4
Número de autores del IAC
4
Número de citas
4
Número de citas referidas
4
Descripción
Context. Thermal conductivity is one of the important mechanisms of heat transfer in the solar corona. In the limit of strongly magnetized plasma, it is typically modeled by Spitzer's expression where the heat flux is aligned with the magnetic field.
Aims: This paper describes the implementation of the heat conduction into the code MANCHA3D with an aim of extending single-fluid MHD simulations from the upper convection zone into the solar corona.
Methods: Two different schemes to model heat conduction are implemented: (1) a standard scheme where a parabolic term is added to the energy equation, and (2) a scheme where the hyperbolic heat flux equation is solved.
Results: The first scheme limits the time step due to the explicit integration of a parabolic term, which makes the simulations computationally expensive. The second scheme solves the limitations on the time step by artificially limiting the heat conduction speed to computationally manageable values. The validation of both schemes is carried out with standard tests in one, two, and three spatial dimensions. Furthermore, we implement the model for heat flux derived by Braginskii (1965, Reviews of Plasma Physics, 205) in its most general form, when the expression for the heat flux depends on the ratio of the collisional to cyclotron frequencies of the plasma, and, therefore on the magnetic field strength. Additionally, our implementation takes into account the heat conduction in parallel, perpendicular, and transverse directions, and provides the contributions from ions and electrons separately. The model recovers Spitzer's expression for parallel thermal conductivity in the strongly magnetized limit but also transitions smoothly between field-aligned conductivity and isotropic conductivity for regions with a low or null magnetic field. We describe the details of the implementation of Braginskii's thermal conductivity using a combination of the first scheme for the perpendicular and transverse directions and the second scheme for the parallel component. We estimate thermal conductivities in a quiet-Sun model. In this model, we find that the perpendicular and transverse components for electrons and ions and the parallel component for ions might have some significance below the transition region. Above the transition region only the parallel component for ions might be important. Finally, we present a two-dimensional test for heat conduction using realistic values of the solar atmosphere where we prove the robustness of the two schemes implemented and show that our adaptation of the hyperbolic treatment offers a great advantage over the computational cost of the simulations.
Proyectos relacionados
Erupción solar
Simulación Numérica de Procesos Astrofísicos

La simulación numérica mediante códigos complejos de ordenador es una herramienta fundamental en la investigación física y en la técnica desde hace décadas. El crecimiento vertiginoso de las capacidades informáticas junto con el avance notable de la matemática numérica ha hecho accesible a los centros de investigación de tamaño medio

Daniel Elías
Nóbrega Siverio
Imagen del Proyecto
Magnestismo Solar y Estelar

Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas

Tobías
Felipe García