Self-similar Approach for Rotating Magnetohydrodynamic Solar and Astrophysical Structures

Luna, M.; Priest, E.; Moreno-Insertis, F.
Referencia bibliográfica

The Astrophysical Journal, Volume 863, Issue 2, article id. 147, 14 pp. (2018).

Fecha de publicación:
8
2018
Número de autores
3
Número de autores del IAC
2
Número de citas
2
Número de citas referidas
2
Descripción
Rotating magnetic structures are common in astrophysics, from vortex tubes and tornadoes in the Sun all the way to jets in different astrophysical systems. The physics of these objects often combine inertial, magnetic, gas pressure, and gravitational terms. Also, they often show approximate symmetries that help simplify the otherwise rather intractable equations governing their morphology and evolution. Here we propose a general formulation of the equations assuming axisymmetry and a self-similar form for all variables: in spherical coordinates (r, θ, ϕ), the magnetic field and plasma velocity are taken to be of the form {\boldsymbol{B}}={\boldsymbol{f}}(θ )/{r}n and {\boldsymbol{v}}={\boldsymbol{g}}(θ )/{r}m, with corresponding expressions for the scalar variables like pressure and density. Solutions are obtained for potential, force-free, and non-force-free magnetic configurations. Potential field solutions can be found for all values of n. Nonpotential force-free solutions possess an azimuthal component B ϕ and exist only for n ≥ 2 the resulting structures are twisted and have closed field lines but are not collimated around the system axis. In the non-force-free case, including gas pressure, the magnetic field lines acquire an additional curvature to compensate for an outward pointing pressure gradient force. We have also considered a pure rotation situation with no gravity, in the zero-β limit: the solution has cylindrical geometry and twisted magnetic field lines. The latter solutions can be helpful in producing a collimated magnetic field structure; but they exist only when n < 0 and m < 0: for applications they must be matched to an external system at a finite distance from the origin.
Proyectos relacionados
Erupción solar
Simulación Numérica de Procesos Astrofísicos
La simulación numérica mediante códigos complejos de ordenador es una herramienta fundamental en la investigación física y en la técnica desde hace décadas. El crecimiento vertiginoso de las capacidades informáticas junto con el avance notable de la matemática numérica ha hecho accesible a los centros de investigación de tamaño medio
Daniel Elías
Nóbrega Siverio
Project Image
Magnetismo, Polarización y Transferencia Radiativa en Astrofísica
Los campos magnéticos están presentes en todos los plasmas astrofísicos y controlan la mayor parte de la variabilidad que se observa en el Universo a escalas temporales intermedias. Se encuentran en estrellas, a lo largo de todo el diagrama de Hertzsprung-Russell, en galaxias, e incluso quizás en el medio intergaláctico. La polarización de la luz
Tanausú del
Pino Alemán