Intermediate mass stars, in their last phases of evolution ("AGB stars"),produce a large number of heavy elements (rich in neutrons), some ofthem radioactive isotopes, such as Rubidium and Technetium. Theseelements are pushed outwards to the surface of the star, and afterwards released into the interstellar medium. Among this type of stars, those least studied have been the more massive ones (between 4 and 8 times the mass of the Sun). Massive AGB stars have been recently identified in our Galaxy and in other nearby galaxies, such as the Magellanic Clouds, thanks to the detection of strong Rubidium overabundances in the spectra of these stars. However, the high abundances of Rubidium observed in these stars were a challenge for the theoretical models, which predicted considerably smaller Rubidium abundances. As apossible cause for this disagreement between theory and observations it was noted that the model atmospheres used previously to derive the chemical abundances were not sufficiently realistic for the AGB stars, because they did not take into account the large envelopes of gas and dust which surround the central star. In this work, we have determined for the first time the abundance of Rubidium taking into account the effect of the circumstellar envelope in a representative sample of massive AGB stars. We find that the Rubidium abundances determinedusing the new model atmospheres are much smaller, showing that our understanding of the nucleosynthesis in massive AGB stars is essentially valid. Given that the AGB stars account for the cosmic origin of more than 50% of all the elements in the Universe heavier than Iron, studying them has important consequences in other fields ofAstrophysics, such as stellar evolution, the chemical evolution of the galaxies, the origin of the globular clusters, or the chemical composition of the Solar System.
Advertised on
References
Zamora et al. 2014, A&A, 564, L4
It may interest you
-
The hierarchical model of galaxy evolution suggests that mergers have a substantial impact on the intricate processes that drive stellar assembly within a galaxy. However, accurately measuring the contribution of accretion to a galaxy's total stellar mass and its balance with in situ star formation poses a persistent challenge, as it is neither directly observable nor easily inferred from observational properties. Using data from MaNGA, we present theory-motivated predictions for the fraction of stellar mass originating from mergers in a statistically significant sample of nearby galaxiesAdvertised on
-
The development of the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) over recent decades has led to the discovery of new extreme astrophysical phenomena in the very-high-energy (VHE, E > 100 GeV) gamma-ray regime. Time-domain and multi-messenger astronomy are inevitably connected to the physics of transient VHE emitters, which show unexpected (and mostly unpredictable) flaring or exploding episodes at different timescales. These transients often share the physical processes responsible for the production of the gamma-ray emission, through cosmic-ray accelerationAdvertised on
-
Light bridges are elongated and bright structures protruding into the umbra of sunspots. The presence of light bridges has a significant role in the evolution of sunspots and the heating of their overlying atmosphere. Therefore, investigating these structures is crucial to understanding fundamental aspects of sunspots. By applying a novel code based on deep-learning algorithms called SICON to spectropolarimetric observations acquired with the Hinode satellite, we computed atmospheric parameters that allowed us to infer the variation of the physical properties of light bridges on a geometricAdvertised on