The study of the disk rotation curve of our Galaxy at large distances provides an interesting scenario for us to test whether magnetic fields should be considered as a non-negligible dynamical ingredient. By assuming a bulge, an exponential disk for the stellar and gaseous distributions, and a dark halo and disk magnetic fields, we fit the rotation velocity of the Milky Way. In general, when the magnetic contribution is added to the dynamics, a better description of the rotation curve is obtained. Our main conclusion is that magnetic fields should be taken into account for the Milky Way dynamics. Azimuthal magnetic field strengths of B phi ~ 2 μG at distances of ~2 R0(i.e. 16 kpc) are able to explain the rise-up for the rotation curve in the outer disk.
Advertised on
It may interest you
-
The properties of blue supergiants are key for constraining the end of the main sequence phase, a phase during which massive stars spend most of their lifetimes. The lack of fast-rotating stars below 21.000K, a temperature around which stellar winds change in behaviour, has been proposed to be caused by enhanced mass-loss rates, which would spin down the star. Alternatively, the lack of fast-rotating stars may be the result of stars reaching the end of the main sequence. Here, we combine newly derived estimates of photospheric and wind parameters, wind terminal velocities from the literatureAdvertised on
-
Massive stars, those over ten times heavier than our Sun, are the conduits of most elements of the periodic table and drive the morphological and chemical makeup of their host galaxies. Yet the origin of the most luminous and hottest stars among them, called 'blue supergiants', has been debated for many decades. Blue supergiants are strange stars. First, they are observed in large numbers, despite conventional stellar physics expecting them to live only briefly. Second, they are typically found alone, despite most massive stars being born with companions. Third, the majority of them harbourAdvertised on
-
The development of the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) over recent decades has led to the discovery of new extreme astrophysical phenomena in the very-high-energy (VHE, E > 100 GeV) gamma-ray regime. Time-domain and multi-messenger astronomy are inevitably connected to the physics of transient VHE emitters, which show unexpected (and mostly unpredictable) flaring or exploding episodes at different timescales. These transients often share the physical processes responsible for the production of the gamma-ray emission, through cosmic-ray accelerationAdvertised on