In a search for common proper motion companions using the VISTA Hemisphere Survey (VHS) and the 2MASS catalogs we have identi fied a very red (J-Ks = 2.47 mag) late-L dwarf companion of a previously unrecognized M dwarf VHSJ125601.92-125723.9 (hereafter VHS1256-1257), located at a projected angular separation of 8.06"+/-0.03". In this work we present a suite of astrometric, photometric, and spectroscopic observations of this new pair in an effort to confirm the companionship and characterize the components. From low-resolution (R_130-600) optical and near-infrared spectroscopy we classi fied the primary and the companion as an M7.5+/-0.5 and L7+/-1.5, respectively. The primary shows slightly weaker alkali lines than fi eld dwarfs of similar spectral type, but still consistent with either a high-gravity dwarf or a younger object of hundreds of millions of years. The secondary shows spectral features characteristic for low surface gravity objects at ages below several hundred million years, like the peaked triangular shape of the H-band continuum and alkali lines weaker than in field dwarfs of the same spectral type. The absence of lithium in the atmosphere of the primary and the likely kinematic membership to the Local Association allowed us to constrain the age of the system to the range of 150-300 Myr. We report a measurement of the trigonometric parallax pi=78.8_+/-6.4 mas, which translates into a distance of 12.7+/-_1.0 pc; the pair thus has a projected physical separation of 102_+/-9 AU. We derived the bolometric luminosities of the components and compared them with theoretical evolutionary models to estimate the masses and e_ffective temperatures. For the primary, we determined a luminosity of log(Lbol/L sol) = -3.14+/-0.10, and inferred a mass of 73 (+20, -15) MJup at the boundary between stars and brown dwarfs and an ef_ective temperature of 2620_+/-140 K. For the companion we obtained a luminosity of log(Lbol/Lsol ) = -5.05+/-_0.22 and a mass of 11.2 (+9.7, -1.8) MJup placing it near the deuterium-burning mass limit. The effective temperature derived from evolutionary models is 880 (+140,-110)K, about 400-700 K cooler than the temperature expected for field late-L dwarfs.
Advertised on
References
It may interest you
-
The development of the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) over recent decades has led to the discovery of new extreme astrophysical phenomena in the very-high-energy (VHE, E > 100 GeV) gamma-ray regime. Time-domain and multi-messenger astronomy are inevitably connected to the physics of transient VHE emitters, which show unexpected (and mostly unpredictable) flaring or exploding episodes at different timescales. These transients often share the physical processes responsible for the production of the gamma-ray emission, through cosmic-ray accelerationAdvertised on
-
The transient Swift J1727.8-162 is the latest member of the X-ray binary black hole family to be discovered. They are formed by a black hole and a low-mass star whose gas is stripped off and accreted to the black hole via an accretion disc. The high temperature of the accretion disc makes it shine in all energy bands up to X-rays, and is particularly bright during epochs known as outbursts. In this novel study, published just a few months after the discovery of the system, we present 20 epochs of optical spectroscopy obtained with the GTC-10.4m telescope. The spectra cover the main accretionAdvertised on
-
Massive stars, those over ten times heavier than our Sun, are the conduits of most elements of the periodic table and drive the morphological and chemical makeup of their host galaxies. Yet the origin of the most luminous and hottest stars among them, called 'blue supergiants', has been debated for many decades. Blue supergiants are strange stars. First, they are observed in large numbers, despite conventional stellar physics expecting them to live only briefly. Second, they are typically found alone, despite most massive stars being born with companions. Third, the majority of them harbourAdvertised on