The linear polarization produced by scattering processes in the spectral lines of the IR triplet of Ca II can be observed near the edge of the solar disk. The cause of this polarization was considered a true enigma until the year 2003, in which IAC researchers could carry out sophisticated calculations based on the quantum theory of the spectral line polarization. In this way, they could demonstrate that the physical origin of the enigmatic polarization is the presence of "atomic polarization" in the lower levels of such spectral lines, which produces dichroism (i.e., selective absorption of the polarization components of the radiation beam that propagates towards the observer) without the need of a magnetic field. This result is important because it provides a way to detect extremely weak magnetic fields in Astrophysics, both in the solar atmosphere and in other astrophysical plasmas (e.g., in the atmospheres of supernovae).
Advertised on
References
It may interest you
-
Despite the fundamental role that dark matter halos play in our theoretical understanding of galaxy formation and evolution, the interplay between galaxies and their host dark matter halos remains highly debated from an observational perspective. This lack of conclusive observational evidence ultimately arises from the inherent difficulty of reliably measuring dark matter (halo) properties. Based on detailed dynamical modeling of nearby galaxies, in this work we proposed a novel observational approach to quantify the potential effect that dark matter halos may have in modulating galaxyAdvertised on
-
In the 90s, the COBE satellite discovered that not all the microwave emission from our Galaxy behaved as expected. Part of this signal was later assigned to a fresh new emission component, spatially correlated with the Galactic dust emission, which showed greater importance in the microwave range of frequencies. It has been named since as “anomalous microwave emission”, or AME. The current main hypothesis to explain the AME origin is that it is emitted by small dust particles which undergo fast spinning movements. In Fernández-Torreiro et al. (2023), we study the observational properties ofAdvertised on
-
The transient Swift J1727.8-162 is the latest member of the X-ray binary black hole family to be discovered. They are formed by a black hole and a low-mass star whose gas is stripped off and accreted to the black hole via an accretion disc. The high temperature of the accretion disc makes it shine in all energy bands up to X-rays, and is particularly bright during epochs known as outbursts. In this novel study, published just a few months after the discovery of the system, we present 20 epochs of optical spectroscopy obtained with the GTC-10.4m telescope. The spectra cover the main accretionAdvertised on