Lyman break galaxies (LBGs) represent one of the kinds of star-forming galaxies that are found in the high-redshift universe. The detection of LBGs in the FIR domain can provide very important clues on their dust attenuation and total star-formation rate (SFR), allowing a more detailed study than those performed so far. In this work we explore the FIR emission of a sample of 16 LBGs at z ~ 3 in the GOODS-North and GOODS-South fields that are individually detected in PACS-100um or PACS-160um. These detections demonstrate the possibility of measuring the dust emission of LBGs at high redshift. We find that PACS-detected LBGs at z ~ 1 are highly obscured galaxies which belong to the ultra-luminous or hyper-luminous IR galaxy class. Their total SFR cannot be recovered with the dust attenuation factors obtained from their UV continuum slope or their SED-derived dust attenuation employing Bruzual & Charlot (2003) templates. Both methods underestimate the results for most of the galaxies. Comparing with a sample of PACS-detected LBGs at z ~ 1 we find evidence that the FIR emission of LBGs might have changed with redshift, in the sense that the dustiest LBGs found at z ~ 3 have more prominent FIR emission, are dustier for a given UV slope, and have higher SFR for a given stellar mass than the dustiest LBGs found at z ~ 1.
Advertised on
References
It may interest you
-
Despite the fundamental role that dark matter halos play in our theoretical understanding of galaxy formation and evolution, the interplay between galaxies and their host dark matter halos remains highly debated from an observational perspective. This lack of conclusive observational evidence ultimately arises from the inherent difficulty of reliably measuring dark matter (halo) properties. Based on detailed dynamical modeling of nearby galaxies, in this work we proposed a novel observational approach to quantify the potential effect that dark matter halos may have in modulating galaxyAdvertised on
-
In the 90s, the COBE satellite discovered that not all the microwave emission from our Galaxy behaved as expected. Part of this signal was later assigned to a fresh new emission component, spatially correlated with the Galactic dust emission, which showed greater importance in the microwave range of frequencies. It has been named since as “anomalous microwave emission”, or AME. The current main hypothesis to explain the AME origin is that it is emitted by small dust particles which undergo fast spinning movements. In Fernández-Torreiro et al. (2023), we study the observational properties ofAdvertised on
-
The magnetic field in the solar chromosphere plays a key role in the heating of the outer solar atmosphere and in the build-up and sudden release of energy in solar flares. However, uncovering the magnetic field vector in the solar chromosphere is a difficult task because the magnetic field leaves its fingerprints in the very faint polarization of the light, which is far from easy to measure and interpret. We analyse the spectropolarimetric observations obtained with the Chromospheric Layer Spectropolarimeter on board a sounding rocket. This suborbital space experiment observed the nearAdvertised on