One remaining open question regarding the physical properties of Lyaemitters (LAEs) is their dust content and its evolution with redshift. The variety of results is large and with those reported by now is difficult to establish clear relations between dust, other fundamental parameters of galaxies (star-formation rate, metallicity or age) and redshift. In this Letter, we report Herschel PACS-100mm, PACS-160mm and Spitzer MIPS-24mm detections of a sample of spectroscopically GALEX-selected LAEs at z~0.3 and~1.0. Five out of ten and one out of two LAEs are detected in, at least, one PACS band at z~0.3 and~1.0z, respectively. These measurements have a great importance given that they allow us to quantify, for the first time, the dust content of LAEs from direct FIR observations. MIPS-24mm detections allow us to determine IR properties of the PACS-undetected LAEs. We obtain that mid-IR/FIR detected star-forming (SF) LAEs at z~0.3 have dust content within 0.75 ≤ A1200Å ≤ 2.0, with a median value of A1200Å ~1.1. This range broadens out to 0.75 ≤ A1200Å ≤ 2.5 when considering those LAEs at z~1.0. Only one SF LAE is undetected both in MIPS-24mm and PACS, with 0.75 ≤ A1200Å ≤ 2.5. These results seem to be larger than those reported for high-redshift LAEs and, therefore, although an evolutionary trend is not clearly seen, it could point out that low-redshift LAEs are dustier than high-redshift ones. However, the diverse methods used could introduce a systematic offset in the results.
Advertised on
References
It may interest you
-
The development of the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) over recent decades has led to the discovery of new extreme astrophysical phenomena in the very-high-energy (VHE, E > 100 GeV) gamma-ray regime. Time-domain and multi-messenger astronomy are inevitably connected to the physics of transient VHE emitters, which show unexpected (and mostly unpredictable) flaring or exploding episodes at different timescales. These transients often share the physical processes responsible for the production of the gamma-ray emission, through cosmic-ray accelerationAdvertised on
-
The hierarchical model of galaxy evolution suggests that mergers have a substantial impact on the intricate processes that drive stellar assembly within a galaxy. However, accurately measuring the contribution of accretion to a galaxy's total stellar mass and its balance with in situ star formation poses a persistent challenge, as it is neither directly observable nor easily inferred from observational properties. Using data from MaNGA, we present theory-motivated predictions for the fraction of stellar mass originating from mergers in a statistically significant sample of nearby galaxiesAdvertised on
-
The formation and evolution of the disk of our Galaxy, the Milky Way, remains an enigma in astronomy. In particular, the relationship between the thick disk and the thin disk —two key components of the Milky Way— is still unclear. Understanding the chemical and dynamical properties of the stars within these disks is crucial, especially in the parameter spaces where their characteristics overlap, such the metallicity regime around [Fe/H] ~ -0.7, which marks the metal-poor end of the thin disk, higher than that of the thick disk. This is often interpreted as an indication that the thin diskAdvertised on