One remaining open question regarding the physical properties of Lyaemitters (LAEs) is their dust content and its evolution with redshift. The variety of results is large and with those reported by now is difficult to establish clear relations between dust, other fundamental parameters of galaxies (star-formation rate, metallicity or age) and redshift. In this Letter, we report Herschel PACS-100mm, PACS-160mm and Spitzer MIPS-24mm detections of a sample of spectroscopically GALEX-selected LAEs at z~0.3 and~1.0. Five out of ten and one out of two LAEs are detected in, at least, one PACS band at z~0.3 and~1.0z, respectively. These measurements have a great importance given that they allow us to quantify, for the first time, the dust content of LAEs from direct FIR observations. MIPS-24mm detections allow us to determine IR properties of the PACS-undetected LAEs. We obtain that mid-IR/FIR detected star-forming (SF) LAEs at z~0.3 have dust content within 0.75 ≤ A1200Å ≤ 2.0, with a median value of A1200Å ~1.1. This range broadens out to 0.75 ≤ A1200Å ≤ 2.5 when considering those LAEs at z~1.0. Only one SF LAE is undetected both in MIPS-24mm and PACS, with 0.75 ≤ A1200Å ≤ 2.5. These results seem to be larger than those reported for high-redshift LAEs and, therefore, although an evolutionary trend is not clearly seen, it could point out that low-redshift LAEs are dustier than high-redshift ones. However, the diverse methods used could introduce a systematic offset in the results.
Advertised on
References
It may interest you
-
The properties of blue supergiants are key for constraining the end of the main sequence phase, a phase during which massive stars spend most of their lifetimes. The lack of fast-rotating stars below 21.000K, a temperature around which stellar winds change in behaviour, has been proposed to be caused by enhanced mass-loss rates, which would spin down the star. Alternatively, the lack of fast-rotating stars may be the result of stars reaching the end of the main sequence. Here, we combine newly derived estimates of photospheric and wind parameters, wind terminal velocities from the literatureAdvertised on
-
In the 90s, the COBE satellite discovered that not all the microwave emission from our Galaxy behaved as expected. Part of this signal was later assigned to a fresh new emission component, spatially correlated with the Galactic dust emission, which showed greater importance in the microwave range of frequencies. It has been named since as “anomalous microwave emission”, or AME. The current main hypothesis to explain the AME origin is that it is emitted by small dust particles which undergo fast spinning movements. In Fernández-Torreiro et al. (2023), we study the observational properties ofAdvertised on
-
The formation and evolution of the disk of our Galaxy, the Milky Way, remains an enigma in astronomy. In particular, the relationship between the thick disk and the thin disk —two key components of the Milky Way— is still unclear. Understanding the chemical and dynamical properties of the stars within these disks is crucial, especially in the parameter spaces where their characteristics overlap, such the metallicity regime around [Fe/H] ~ -0.7, which marks the metal-poor end of the thin disk, higher than that of the thick disk. This is often interpreted as an indication that the thin diskAdvertised on