We have selected the Galactic HII region M43, a close-by apparently spherical nebula ionized by a single star (HD37061, B0.5V) to investigate several topics of recent interest in the field of HII regions and massive stars. We perform a combined, comprehensive study of the nebula and its ionizing star by using as many observational constraints as possible. For this study we collected a set of high-quality observations, including the optical spectrum of HD3706, along with nebular optical imaging and long-slit spatially resolved spectroscopy. On the one hand, we have carried out a quantitative spectroscopic analysis of the ionizing star from which we have determined the stellar parameters of HD37061 and the total number of ionizing photons emitted by the star; on the other hand, we have done a empirical analysis of the nebular images and spectroscopy from which we have find observational evidence of scattered light from the Huygens region (the brightest part of the Orion nebula) in the M43 region. We show the importance of an adequate correction of this scattered light in both the imagery and spectroscopic observations of M43 in accurately determining the total nebular Halpha luminosity, the nebular physical conditions. and chemical abundances. We have computed total abundances for three of the analyzed elements (O, S, and N), directly from observable ions (no ionization correction factors are needed). The comparison of these abundances with those derived from the spectrum of the Orion nebula indicates the importance of the atomic data and, specially in the case of M42, the considered ionization correction factors.
It may interest you
-
Puzzling properties of massive early-type galaxies (ETGs) emerge when studying their spectra at near-infrared (NIR) wavelengths. Massive ETGs show strong CO absorption features in their H and K band spectra that cannot be explained by state-of-the-art stellar population models. For many years, the disagreement has been attributed to the presence of intermediate-age (0.1-2 Gyr) stellar populations in these galaxies, as the NIR light of intermediate-age stellar populations is dominated by cool stars (e.g. asymptotic giant branch (AGB) stars) that show strong CO absorptions in their spectrum
Advertised on -
Classical novae are cataclysmic binary star systems in which the matter of a companion star is accreted on a white dwarf. Accumulation of hydrogen in a layer eventually causes a thermonuclear explosion on the surface of the white dwarf, brightening the white dwarf to ~100.000 solar luminosities and triggering ejection of the accumulated matter. Novae provide the extreme conditions required to accelerate particles, electrons or protons, to high energies. Here we present the detection of gamma rays by the MAGIC telescopes from the 2021 outburst of RS Ophiuchi, a recurrent nova with a red giant
Advertised on -
We present the results of our spatially resolved investigation into the interplay between the ages of the stellar populations and the kinematics of the warm ionised outflows in the well-studied type II quasar Markarian 34. Utilising integral field spectroscopic (IFS) data, we determine the spatial distribution of the young stellar population (YSP; age < 100 Myr) using spectral synthesis modelling. We also employ the 5007 [OIII] emission line as a tracer of the warm ionised gas kinematics. We demonstrate a spatial correlation between the outer edges of the advancing side of the outflow and an
Advertised on