We present a visual determination of the number of bright points (BPs) existing in the quiet Sun, which are structures thought to trace intense kG magnetic concentrations. The measurement is based on a 0farcs1 angular resolution G-band movie obtained with the Swedish Solar Telescope at the solar disk center. We find 0.97 BPs Mm-2, which is a factor 3 larger than any previous estimate. It corresponds to 1.2 BPs per solar granule. Depending on the details of the segmentation, the BPs cover between 0.9% and 2.2% of the solar surface. Assuming their field strength to be 1.5 kG, the detected BPs contribute to the solar magnetic flux with an unsigned flux density between 13 G and 33 G. If network and inter-network regions are counted separately, they contain 2.2 BPs Mm-2 and 0.85 BPs Mm-2, respectively.
Advertised on
References
(2010) Magnetic bright points in the quiet Sun. ApJ, 715, L26
It may interest you
-
It’s been decades since the need to study other stars to understand the past, present and future of the Sun was realized. One important aspect that has been investigated is the magnetic activity of stars for which we cannot fully grasp the mechanisms involved. Indeed, the origin of stellar magnetic cycles or the dependence of the magnetic activity on the stellar properties are not completely understood. This knowledge improves not only our understanding of the physics involved in stellar evolution but also affects the study of the Sun to better predict high-energy events and the betterAdvertised on
-
Observations made with the James Webb Space Telescope (JWST) have revealed a larger-than-expected number of massive galaxies when the Universe was still young. The focus of this study is precisely one of these galaxies, ZF-UDS-7329. It is a very compact object, and its spectrum suggests that it formed at a very early stage, when the Universe was around 2 billion years old. According to theoretical predictions, these objects first formed a generation of stars at the center of their dark matter halos and subsequently grew by merging with other halos. However, due to the random nature of theseAdvertised on
-
Massive stars, those over ten times heavier than our Sun, are the conduits of most elements of the periodic table and drive the morphological and chemical makeup of their host galaxies. Yet the origin of the most luminous and hottest stars among them, called 'blue supergiants', has been debated for many decades. Blue supergiants are strange stars. First, they are observed in large numbers, despite conventional stellar physics expecting them to live only briefly. Second, they are typically found alone, despite most massive stars being born with companions. Third, the majority of them harbourAdvertised on