We present a visual determination of the number of bright points (BPs) existing in the quiet Sun, which are structures thought to trace intense kG magnetic concentrations. The measurement is based on a 0farcs1 angular resolution G-band movie obtained with the Swedish Solar Telescope at the solar disk center. We find 0.97 BPs Mm-2, which is a factor 3 larger than any previous estimate. It corresponds to 1.2 BPs per solar granule. Depending on the details of the segmentation, the BPs cover between 0.9% and 2.2% of the solar surface. Assuming their field strength to be 1.5 kG, the detected BPs contribute to the solar magnetic flux with an unsigned flux density between 13 G and 33 G. If network and inter-network regions are counted separately, they contain 2.2 BPs Mm-2 and 0.85 BPs Mm-2, respectively.
It may interest you
-
CaII Kgrains, i.e., intermittent, short-lived (about 1 minute), periodic (2-4 minutes), pointlike chromospheric brightenings, are considered to be the manifestations of acoustic waves propagating upward from the solar surface and developing into shocks in the chromosphere. After the simulations of Carlsson and Stein, we know that hot shocked gas moving upward interacting with the downflowing chromospheric gas (falling down after having been displaced upward by a previous shock) nicely reproduces the spectral features of the CaII K profiles observed in such grains, i.e., a narrowband emission
Advertised on -
Dark matter is an invisible substance that makes up more than eighty percent of the matter content of the universe. We know of its existence due to its gravitational influence, being a key ingredient to understand everything from the large-scale evolution of the universe to the formation of galaxies like the Milky Way, of which we are part of. However, very little is known about its nature, which constitutes one of the greatest unsolved problems in contemporary physics. The fuzzy dark matter model has recently been studied as a promising candidate. In this model, it is postulated that dark
Advertised on -
Stellar ages are key to several fields of astrophysics such as exoplanet research, galactic-archeology, and of course stellar physics. Obtaining the ages of stars is however not straightforward and requires stellar modeling. The most widely used technique only requires stellar colors or temperature and surface gravity, but the uncertainties are quite large. This technique is most efficient for stars belonging to clusters, as they were born from the same molecular cloud and share the same ages. In the last decades, based on the study of stellar acoustic waves, asteroseismology became the most
Advertised on