The polarization of the Mg II k line at 279.5 nm encodes valuable information on the magnetic field of the upper solar chromosphere, where this strong resonance line originates. We have developed a novel radiative transfer code which allows us to account for scattering polarization and the Hanle and Zeeman effects, as well as partial frequency redistribution (PRD) phenomena (i.e., correlation effects between the incoming and outgoing photons in the scattering events). This non-LTE code, which treats the atomic system and the polarized radiation field quantum-mechanically, has been applied to calculate the Stokes profiles that emerge from given models of the solar chromosphere considering various magnetic field configurations. The Hanle effect is the magnetic-field-induced modification of the linear polarization produced by scattering processes in a spectral line. Before this investigation, it was thought that the wings of the linear polarization profiles are insensitive to the presence of a magnetic field, and that the magnetic sensitivity of strong chromospheric lines, like the Mg II k line, is restricted to the circular polarization induced by the Zeeman effect and, via the Hanle effect, to the core of the linear polarization profiles. We have discovered that in strong resonance lines for which PRD effects are significant, like Mg II k, the magneto-optical terms of the Stokes-vector transfer equation introduce a very significant magnetic sensitivity in the wings of the linear polarization profiles. This hitherto unnoticed sensitivity to both weak (around 5 G) and stronger magnetic fields expands the scientific interest of the Mg II k line polarization as a diagnostic tool for probing the magnetism of the enigmatic solar chromosphere, both in quiet and active regions of the Sun. The second flight of the Chromospheric LAyer Spectro-Polarimeter (CLASP) will be dedicated to observe the wavelength variation of the Stokes profiles across the Mg II h & k lines. The first flight of the CLASP sounding rocket experiment, proposed by NASA, JAXA and the IAC, took place on September 3, 2015. This very successful international project provided the first measurement of the polarization in an ultraviolet line of the solar disk radiation (hydrogen Lyman-alpha at 121.6 nm), and the first empirical exploration of the geometrical complexity and magnetic field of the chromosphere-corona transition region of the Sun.
Advertised on
References
It may interest you
-
Recent observational studies suggest that feedback from active galactic nuclei (AGNs)—the energetic centres powered by supermassive black holes—may play an important role in the formation and evolution of dwarf galaxies, contrary to the standard thought. We investigated this using two sets of 12 cosmological magnetohydrodynamic simulations of the formation of dwarf galaxies: one set using a version of the AURIGA galaxy formation physics model including AGN feedback and a parallel set with AGN feedback turned off. Our results reveal that AGNs can suppress the star formation (SF) of dwarfAdvertised on
-
Despite the fundamental role that dark matter halos play in our theoretical understanding of galaxy formation and evolution, the interplay between galaxies and their host dark matter halos remains highly debated from an observational perspective. This lack of conclusive observational evidence ultimately arises from the inherent difficulty of reliably measuring dark matter (halo) properties. Based on detailed dynamical modeling of nearby galaxies, in this work we proposed a novel observational approach to quantify the potential effect that dark matter halos may have in modulating galaxyAdvertised on
-
The magnetic field in the solar chromosphere plays a key role in the heating of the outer solar atmosphere and in the build-up and sudden release of energy in solar flares. However, uncovering the magnetic field vector in the solar chromosphere is a difficult task because the magnetic field leaves its fingerprints in the very faint polarization of the light, which is far from easy to measure and interpret. We analyse the spectropolarimetric observations obtained with the Chromospheric Layer Spectropolarimeter on board a sounding rocket. This suborbital space experiment observed the nearAdvertised on